Learn R Programming

sbpiper (version 1.9.0)

plot_single_param_scan_data: Plot model single parameter scan time courses

Description

Plot model single parameter scan time courses

Usage

plot_single_param_scan_data(model, inhibition_only, inputdir, outputdir, run,
  percent_levels = TRUE, min_level = 0, max_level = 100,
  levels_number = 10, xaxis_label = "", yaxis_label = "")

Arguments

model

The model name

inhibition_only

true if the scanning only decreases the variable amount (inhibition only)

inputdir

the input directory containing the simulated data

outputdir

the output directory that will contain the simulated plots

run

the simulation number

percent_levels

true if scanning levels are in percent (default TRUE)

min_level

the minimum level (default: 0)

max_level

the maximum level (default: 100)

levels_number

the number of levels (default: 10)

xaxis_label

the label for the x axis (e.g. Time (min))

yaxis_label

the label for the y axis (e.g. Level (a.u.))

Examples

Run this code
# NOT RUN {
data(insulin_receptor_ps1_l0)
data(insulin_receptor_ps1_l1)
data(insulin_receptor_ps1_l3)
data(insulin_receptor_ps1_l4)
data(insulin_receptor_ps1_l6)
data(insulin_receptor_ps1_l8)
data(insulin_receptor_ps1_l9)
data(insulin_receptor_ps1_l11)
data(insulin_receptor_ps1_l13)
data(insulin_receptor_ps1_l14)
data(insulin_receptor_ps1_l16)
dir.create(file.path("ps1_datasets"))
write.table(insulin_receptor_ps1_l0, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_0.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l1, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_1.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l3, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_3.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l4, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_4.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l6, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_6.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l8, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_8.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l9, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_9.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l11, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_11.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l13, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_13.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l14, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_14.csv"), 
            row.names=FALSE)
write.table(insulin_receptor_ps1_l16, 
            file=file.path("ps1_datasets",
                           "insulin_receptor_scan_IR_beta__rep_1__level_16.csv"), 
            row.names=FALSE)
plot_single_param_scan_data(
       model="insulin_receptor_scan_IR_beta", 
       inhibition_only=FALSE,
       inputdir="ps1_datasets", 
       outputdir="ps1_plots",
       run=1,
       percent_levels=TRUE, 
       min_level=0, 
       max_level=250, 
       levels_number=10, 
       xaxis_label="Time [m]", 
       yaxis_label="Level [a.u.]")
# }

Run the code above in your browser using DataLab