Learn R Programming

scMetaTraj (version 0.1.1)

scMetaTraj_cluster: Cluster cells in metabolic PCA space

Description

scMetaTraj_cluster() identifies metabolic subclusters by constructing a kNN graph in metabolic PCA space and applying community detection.

IMPORTANT DESIGN PRINCIPLES:

  • Clustering is performed ONLY in metabolic PCA space.

  • UMAP coordinates must NEVER be used for clustering.

  • Results are independent of transcriptomic clustering.

Usage

scMetaTraj_cluster(
  embedding,
  k = 20,
  resolution = 0.5,
  method = c("leiden", "louvain"),
  seed = 123
)

Value

A factor of length equal to number of cells, giving metabolic cluster labels per cell.

Arguments

embedding

Numeric matrix (cells x PCs). Output of scMetaTraj_embed(method = "PCA").

k

Integer. Number of nearest neighbors for kNN graph.

resolution

Numeric. Resolution parameter for clustering (used for Leiden only).

method

Character. "leiden" (default) or "louvain".

seed

Integer. Random seed for reproducibility.

Examples

Run this code
# Create example PCA embedding
set.seed(123)
n_cells <- 100
n_pcs <- 5

embedding <- matrix(rnorm(n_cells * n_pcs), nrow = n_cells, ncol = n_pcs)
rownames(embedding) <- paste0("Cell", 1:n_cells)
colnames(embedding) <- paste0("PC", 1:n_pcs)

# Perform clustering
clusters <- scMetaTraj_cluster(
  embedding = embedding,
  k = 20,
  method = "louvain"
)

# View results
table(clusters)

Run the code above in your browser using DataLab