Last chance! 50% off unlimited learning
Sale ends in
Density, distribution function, quantile function and random generation for the Poisson-beta distribution: a Poisson distribution whose parameter itself follows a beta distribution. Alpha and beta are the parameters of this specific beta distribution which is scaled on (0, c) in contrast to the usual scaling of the standard beta distribution on (0,1).
dpb(x, alpha, beta, c = 1, log = FALSE)ppb(q, alpha, beta, c = 1, lower.tail = TRUE, log.p = FALSE)
qpb(p, alpha, beta, c = 1, lower.tail = TRUE, log.p = FALSE)
rpb(n, alpha, beta, c = 1)
Vector of (non-negative integer) quantiles
Non-negative parameters of the beta distribution (shape1 and shape2)
Numeric scaling parameter of the beta distribution. The standard beta is scaled on (0,1) (default) and can be transformed to (0,c).
Logical; if TRUE, probabilities p are given as log(p)
Logical; if TRUE (default), probabilities are
Vector of probabilities
Number of observations
X <- dpb(x=0:200, alpha=5, beta=3, c=20)
plot(0:200, X, type='l')
Y <- dpb(0:10, seq(10.0,11.0,by=0.1), seq(30.0,31.0,by=0.1), seq(10.2,11.2,by=0.1))
Y <- ppb(q= 0 :200, alpha=5, beta= 3, c=20)
plot(0:200, Y, type="l")
Z <- qpb(p= seq(0,1, by= 0.01), alpha=5, beta= 3, c=20)
plot(seq(0,1, by= 0.01),Z, type="l")
RV <- rpb(n = 1000, alpha=5, beta= 3, c=20)
plot(0 : 200, X, type="l")
lines(density(RV), col="red")
R2 <- rpb(11, seq(10.0,11.0,by=0.1), seq(30.0,31.0,by=0.1), seq(10.2,11.2,by=0.1))
Run the code above in your browser using DataLab