chf_1F1: Kummer's (confluent hypergeometric) function in log-scale
Description
Kummer's function (also: confluent hypergeometric function of the first kind)
for numeric (non-complex) values and input parameters in log-scale.
Usage
chf_1F1(x, a, b)
Arguments
x
numeric value or vector
a, b
numeric parameters of the Kummer function
Details
Note that the output is in log-scale. So the evaluated function is:
$$\log \left[\sum_{n=0}^\infty \frac{a^{(n)} x^n}{ b^(n) n!}\right]$$
where \(a^{(n)}\) and \(b^{(n)}\) describe the rising factorial.