Learn R Programming

scaleboot (version 1.0-1)

sbaic: Akaike's Information Criterion

Description

Extract or modify the AIC values for models.

Usage

sbaic(x,...)
# S3 method for scaleboot
sbaic(x,k,...)
# S3 method for scalebootv
sbaic(x,...)

sbaic(x) <- value # S3 method for scaleboot sbaic(x) <- value # S3 method for scalebootv sbaic(x) <- value

Arguments

x

an object used to select a method.

k

numeric, the penalty per parameter to be used.

value

numeric vector of AIC values for models.

...

further arguments passed to and from other methods.

Value

For an object of class "scaleboot", sbaic returns a numeric vector of AIC values for models. If k is missing, then the aic components in the fi vector of x are returned. If k is specified, rss-k*df is calculated for each model. For the usual AIC, k=2. For the BIC (Schwarz's Bayesian information criterion), k=log(sum(x$nb)).

Details

sbaic can be used to modify the aic components for models in x as shown in the examples below.

References

Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statistics. D. Reidel Publishing Company.

See Also

sbfit.

Examples

Run this code
# NOT RUN {
data(mam15)
a <- mam15.relltest[["t4"]] # an object of class "scaleboot"
sbaic(a) # print AIC for models
sbaic(a,k=log(sum(a$nb))) # print BIC for models
sbaic(a) <- sbaic(a,k=log(sum(a$nb))) # set BIC
sbaic(a) # print BIC for models
# }

Run the code above in your browser using DataLab