vcov.scam: Parameter estimator covariance matrix from SCAM fit
Description
Extracts, from a fitted scam object, either the Bayesian posterior covariance matrix of the
transformed parameters (a mix of exponentiated and un-exponentiated parameters) or the frequentist covariance matrix of the parameter estimators.
A matrix corresponding to the estimated posterior covariance matrix of the (un)transformed model parameter estimators/coefficients, or the estimated frequentist covariance matrix of the parameters, depending on the arguments freq and unstransformed.
Arguments
object
fitted model object of class scam as produced by scam().
freq
TRUE to return the frequentist covariance matrix of the (transformed or untransformed)
parameter estimators, FALSE to return the Bayesian posterior covariance
matrix of the parameters.
untransformed
if TRUE then the covariance matrix of the untransformed parameters is returned.
...
other arguments, currently ignored.
Author
Natalya Pya <nat.pya@gmail.com>
Details
Extracts, from a fitted scam object, the Bayesian posterior covariance matrix of the transformed parameters (default; object$Vp.t), the frequentist covariance matrix of the transformed parameters (object$Ve.t), or the covariance matrix of the untransformed parameters (object$Vp for Bayesian and object$Ve for frequentist inference).
References
Wood, S.N. (2017) Generalized Additive Models: An Introductio with R (2nd ed) CRC Press
Pya, N. and Wood, S.N. (2015) Shape constrained additive models. Statistics and Computing, 25(3), 543-559