Learn R Programming

scan (version 0.20)

plm: Piecewise linear model / piecewise regression

Description

The plm function computes a piecewise regression model (see Huitema & McKean, 2000).

Usage

plm(data, AR = NULL, model = "B&L-B", count.data = FALSE, 
    family = ifelse(count.data, "poisson", "gaussian"), ...)

Arguments

data

A single-case data frame or a list of single-case data frames. See makeSCDF to learn about this format.

AR

Maximal lag of autoregression. Modeled based on the Autoregressive-Moving Average (ARMA) function.

model

Regression model used for computation (see Huitema & McKean, 2000). Default is model = "B&L-B". Possible values are: "B&L-B", "H-M", "Mohr#1", "Mohr#2", and "Manly".

count.data

Still under development. Do not use.

family

Still under development. Do not use.

...

Further arguments passed to the glm function.

Value

model

Character string from function call (see Arguments above).

F

F value for specified model.

df1

Degrees of freedom (Regression).

df2

Degrees of freedom (Residual).

p

P value for specified model.

R2

Explained variance R squared.

R2.adj

Adjusted R squared.

count.data

Logical argument from function call (see Arguments above).

ES.slope

Effect size / Explained variance gain of slope.

ES.trend

Effect size / Explained variance gain of trend.

full.model

Full regression model list (including coefficients, residuals and many others

MT

Number of measurements.

data

Single-case data frame passed to the function.

N

Number of single-cases.

family

Character string from function call (see Arguments above).

References

Beretvas, S., & Chung, H. (2008). An evaluation of modified R2-change effect size indices for single-subject experimental designs. Evidence-Based Communication Assessment and Intervention, 2, 120-128.

Huitema, B. E., & McKean, J. W. (2000). Design specification issues in time-series intervention models. Educational and Psychological Measurement, 60, 38-58.

See Also

hplm

Examples

Run this code
# NOT RUN {
## Compute a piecewise regression model for a random single-case
dat <- rSC(1, MT = 30, B.start = 11, d.level = 1.0, d.slope = 0.05, d.trend = 0.05)
plm(dat, AR = 3)
# }

Run the code above in your browser using DataLab