data(pollen)
cd <- clean.counts(pollen)
knn <- knn.error.models(cd, k=ncol(cd)/4, n.cores=10, min.count.threshold=2, min.nonfailed=5, max.model.plots=10)
varinfo <- pagoda.varnorm(knn, counts = cd, trim = 3/ncol(cd), max.adj.var = 5, n.cores = 1, plot = FALSE)
# create go environment
library(org.Hs.eg.db)
# translate gene names to ids
ids <- unlist(lapply(mget(rownames(cd), org.Hs.egALIAS2EG, ifnotfound = NA), function(x) x[1]))
rids <- names(ids); names(rids) <- ids
go.env <- lapply(mget(ls(org.Hs.egGO2ALLEGS), org.Hs.egGO2ALLEGS), function(x) as.character(na.omit(rids[x])))
# clean GOs
go.env <- clean.gos(go.env)
# convert to an environment
go.env <- list2env(go.env)
pwpca <- pagoda.pathway.wPCA(varinfo, go.env, n.components=1, n.cores=10, n.internal.shuffles=50)
Run the code above in your browser using DataLab