Learn R Programming

scdhlm (version 0.3)

simulate_MB4: Simulate Model MB4 from Pustejovsky, Hedges, & Shadish (2014)

Description

Simulates data from a linear mixed effects model, then calculates REML effect size estimator as described in Pustejovsky, Hedges, & Shadish (2014).

Usage

simulate_MB4(iterations, beta, rho, phi, tau2_ratio, tau_corr, p_const, r_const, design, m, n, MB = TRUE)

Arguments

iterations
number of independent iterations of the simulation
beta
vector of fixed effect parameters
rho
intra-class correlation parameter
phi
autocorrelation parameter
tau2_ratio
ratio of trend variance to intercept variance
tau_corr
correlation between case-specific trends and intercepts
p_const
vector of constants for calculating numerator of effect size
r_const
vector of constants for calculating denominator of effect size
design
design matrix. If not specified, it will be calculated based on m, n, and MB.
m
number of cases. Not used if design is specified.
n
number of measurement occasions. Not used if design is specified.
MB
If true, a multiple baseline design will be used; otherwise, an AB design will be used. Not used if design is specified.

Value

A matrix reporting the mean and variance of the effect size estimates and various associated statistics.

References

Pustejovsky, J. E., Hedges, L. V., & Shadish, W. R. (2014). Design-comparable effect sizes in multiple baseline designs: A general modeling framework. Journal of Educational and Behavioral Statistics, 39(4), 211-227. doi:10.3102/1076998614547577

Examples

Run this code
simulate_MB4(iterations = 10, beta = c(0,1,0,0), rho = 0.8, phi = 0.5, 
             tau2_ratio = 0.5, tau_corr = 0, 
             p_const = c(0,1,0,7), r_const = c(1,0,1,0,0), 
             design = design_matrix(3, 16, treat_times=c(5,9,13), center = 12))
simulate_MB4(iterations = 10, beta = c(0,1,0,0), rho = 0.8, phi = 0.5, 
             tau2_ratio = 0.5, tau_corr = 0, m = 6, n = 8)

Run the code above in your browser using DataLab