Learn R Programming

scdhlm (version 0.7.3)

simulate_MB4: Simulate Model MB4 from Pustejovsky, Hedges, & Shadish (2014)

Description

Simulates data from a linear mixed effects model, then calculates REML effect size estimator as described in Pustejovsky, Hedges, & Shadish (2014).

Usage

simulate_MB4(
  iterations,
  beta,
  rho,
  phi,
  tau2_ratio,
  tau_corr,
  p_const,
  r_const,
  design,
  m,
  n,
  MB = TRUE
)

Value

A matrix reporting the mean and variance of the effect size estimates and various associated statistics.

Arguments

iterations

number of independent iterations of the simulation

beta

vector of fixed effect parameters

rho

intra-class correlation parameter

phi

autocorrelation parameter

tau2_ratio

ratio of trend variance to intercept variance

tau_corr

correlation between case-specific trends and intercepts

p_const

vector of constants for calculating numerator of effect size

r_const

vector of constants for calculating denominator of effect size

design

design matrix. If not specified, it will be calculated based on m, n, and MB.

m

number of cases. Not used if design is specified.

n

number of measurement occasions. Not used if design is specified.

MB

If true, a multiple baseline design will be used; otherwise, an AB design will be used. Not used if design is specified.

References

Pustejovsky, J. E., Hedges, L. V., & Shadish, W. R. (2014). Design-comparable effect sizes in multiple baseline designs: A general modeling framework. Journal of Educational and Behavioral Statistics, 39(4), 211-227. tools:::Rd_expr_doi("10.3102/1076998614547577")

Examples

Run this code

simulate_MB4(iterations = 5, beta = c(0,1,0,0), rho = 0.8, phi = 0.5, 
             tau2_ratio = 0.5, tau_corr = 0, 
             p_const = c(0,1,0,7), r_const = c(1,0,1,0,0), 
             design = design_matrix(3, 16, treat_times=c(5,9,13), center = 12))
             
simulate_MB4(iterations = 5, beta = c(0,1,0,0), rho = 0.8, phi = 0.5, 
             tau2_ratio = 0.5, tau_corr = 0, m = 6, n = 8)
             

Run the code above in your browser using DataLab