## Not run:
# > set.seed(1)
# > x=as.scidb(rnorm(10))
# > x[]
# # [1] -0.6264538 0.1836433 -0.8356286 1.5952808 0.3295078 -0.8204684
# # [7] 0.4874291 0.7383247 0.5757814 -0.3053884
# > (x < 0)[]
# # [1] TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
# > (x
# #sparse vector (nnz/length = 4/10) of class "dsparseVector"
# # [1] -0.6264538 . -0.8356286 . . -0.8204684
# # [7] . . . -0.3053884
#
# #
# > Filter("val < 0", x)[]
# #sparse vector (nnz/length = 4/10) of class "dsparseVector"
# # [1] -0.6264538 . -0.8356286 . . -0.8204684
# # [7] . . . -0.3053884
#
# # Sparse filtered output is useful to use to index SciDB arrays. The next
# # example selects just the entries of the array that meet the condition:
# > x[x
# # [1] -0.6264538 -0.8356286 -0.8204684 -0.3053884
#
# # The TRUE/FALSE output array is useful to aggregate by groups defined
# # by the condition. The next example computes the mean of the entries
# # that are less than zero, and the mean of the entries that are greater
# # than or equal to zero:
# > aggregate(x, by=(x<0), FUN=mean)[]
# # condition_index val_avg condition
# #0 0 0.6516612 false
# #1 1 -0.6469848 true
# ## End(Not run)
Run the code above in your browser using DataLab