sclr
The goal of sclr is to fit the scaled logit model from Dunning (2006) using the maximum likelihood method.
Installation
The package is not yet on CRAN. You can install the development version from GitHub with:
# install.packages("devtools")
devtools::install_github("khvorov45/sclr")
Model
For log likelihood, scores and second derivatives see vignette("Math",
"sclr")
. Documentation of the main fitting function ?sclr
has details
on how the model is fit.
Example
Usage is similar to other model fitting functions like lm
.
library(sclr)
fit <- sclr(status ~ logHI, sclr_one_titre_data)
summary(fit)
#> Call: status ~ logHI
#>
#> Parameter estimates
#> lambda beta_0 beta_logHI
#> 0.243828 -7.763952 2.088048
#>
#> 95% confidence intervals
#> 2.5 % 97.5 %
#> lambda 0.2255282 0.2621277
#> beta_0 -9.6362901 -5.8916139
#> beta_logHI 1.6458693 2.5302271
For more details see vignette("Usage", "sclr")
.
References
Dunning AJ (2006). “A model for immunological correlates of protection.” Statistics in Medicine, 25(9), 1485-1497. doi: 10.1002/sim.2282.