These functions calculate scores (CRPS, LogS, DSS) and their gradient and Hessian with respect to the parameters of a location-scale transformed normal distribution. Furthermore, the censoring transformation and the truncation transformation may be introduced on top of the location-scale transformed normal distribution.
## score functions
crps_norm(y, mean = 0, sd = 1, location = mean, scale = sd)
crps_cnorm(y, location = 0, scale = 1, lower = -Inf, upper = Inf)
crps_tnorm(y, location = 0, scale = 1, lower = -Inf, upper = Inf)
crps_gtcnorm(y, location = 0, scale = 1, lower = -Inf, upper = Inf, lmass = 0, umass = 0)
logs_norm(y, mean = 0, sd = 1, location = mean, scale = sd)
logs_tnorm(y, location = 0, scale = 1, lower = -Inf, upper = Inf)
dss_norm(y, mean = 0, sd = 1, location = mean, scale = sd)## gradient (location, scale) functions
gradcrps_norm(y, location = 0, scale = 1)
gradcrps_cnorm(y, location = 0, scale = 1, lower = -Inf, upper = Inf)
gradcrps_tnorm(y, location = 0, scale = 1, lower = -Inf, upper = Inf)
## Hessian (location, scale) functions
hesscrps_norm(y, location = 0, scale = 1)
hesscrps_cnorm(y, location = 0, scale = 1, lower = -Inf, upper = Inf)
hesscrps_tnorm(y, location = 0, scale = 1, lower = -Inf, upper = Inf)
For the score functions: a vector of score values.
For the gradient and Hessian functions: a matrix with column names corresponding to the respective partial derivatives.
vector of observations.
an alternative way to specify location.
an alternative way to specify scale.
vector of location parameters.
vector of scale parameters.
lower and upper truncation/censoring bounds.
vectors of point masses in lower and upper
respectively.