The realized expectile score is defined by:
$$S(\textbf{\textit{x}}, \textbf{\textit{y}}, p) := (1/n)
\sum_{i = 1}^{n} L(x_i, y_i, p)$$
where
$$\textbf{\textit{x}} = (x_1, ..., x_n)^\mathsf{T}$$
$$\textbf{\textit{y}} = (y_1, ..., y_n)^\mathsf{T}$$
and
$$
L(x, y, p) := |\textbf{1} \lbrace x \geq y \rbrace - p| (x - y)^2
$$
Domain of function:
$$\textbf{\textit{x}} \in \mathbb{R}^n$$
$$\textbf{\textit{y}} \in \mathbb{R}^n$$
$$0 < p < 1$$
Range of function:
$$S(\textbf{\textit{x}}, \textbf{\textit{y}}, p) \geq 0,
\forall \textbf{\textit{x}}, \textbf{\textit{y}} \in \mathbb{R}^n,
p \in (0, 1)$$