Learn R Programming

scoringfunctions (version 1.1)

huber_rs: Mean Huber score

Description

The function huber_rs computes the mean Huber score with parameter \(a\), when \(\textbf{\textit{y}}\) materialises and \(\textbf{\textit{x}}\) is the prediction.

Mean Huber score is a realised score corresponding to the Huber scoring function huber_sf.

Usage

huber_rs(x, y, a)

Value

Value of the mean Huber score.

Arguments

x

Prediction. It can be a vector of length \(n\) (must have the same length as \(\textbf{\textit{y}}\)).

y

Realisation (true value) of process. It can be a vector of length \(n\) (must have the same length as \(\textbf{\textit{x}}\)).

a

It can be a vector of length \(n\) (must have the same length as \(y\)) or a scalar.

Details

The mean Huber score is defined by:

$$S(\textbf{\textit{x}}, \textbf{\textit{y}}, a) := (1/n) \sum_{i = 1}^{n} L(x_i, y_i, a)$$

where

$$\textbf{\textit{x}} = (x_1, ..., x_n)^\mathsf{T}$$

$$\textbf{\textit{y}} = (y_1, ..., y_n)^\mathsf{T}$$

and

$$ L(x, y, a) := \left\{ \begin{array}{ll} \dfrac{1}{2} (x - y)^2, & |x - y| \leq a\\ a |x - y| - \dfrac{1}{2} a^2, & |x - y| > a \end{array} \right. $$

Domain of function:

$$\textbf{\textit{x}} \in \mathbb{R}^n$$

$$\textbf{\textit{y}} \in \mathbb{R}^n$$

$$a > 0$$

Range of function:

$$S(\textbf{\textit{x}}, \textbf{\textit{y}}, a) \geq 0, \forall \textbf{\textit{x}}, \textbf{\textit{y}} \in \mathbb{R}^n, a > 0$$

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Journal of Statistics 13(1):1166--1211. tools:::Rd_expr_doi("10.1214/19-EJS1552").

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical Association 106(494):746--762. tools:::Rd_expr_doi("10.1198/jasa.2011.r10138").

Examples

Run this code
# Compute the Huber mean score.

set.seed(12345)

a <- 0.5

x <- 0

y <- rnorm(n = 100, mean = 0, sd = 1)

print(huber_rs(x = x, y = y, a = a))

print(huber_rs(x = rep(x = x, times = 100), y = y, a = a))

Run the code above in your browser using DataLab