The function linex_sf computes the LINEX scoring function with parameter \(a\)
when \(y\) materialises and \(x\) is the predictive
\(-(1/a) \log{\textnormal{E}_F[\textnormal{e}^{-a Y}]}\) moment generating
functional.
The LINEX scoring function is defined by Varian (1975).
Usage
linex_sf(x, y, a)
Value
Vector of LINEX losses.
Arguments
x
Predictive \(-(1/a) \log{\textnormal{E}_F[\textnormal{e}^{-a Y}]}\)
moment generating functional (prediction). It can be a vector of length \(n\)
(must have the same length as \(y\)).
y
Realisation (true value) of process. It can be a vector of length
\(n\) (must have the same length as \(x\)).
a
It can be a vector of length \(n\) (must have the same length as
\(y\)).
Details
The LINEX scoring function is defined by:
$$S(x, y, a) := \textnormal{e}^{a (x - y)} - a (x - y) - 1$$
Domain of function:
$$x \in \mathbb{R}$$
$$y \in \mathbb{R}$$
$$a \neq 0$$
Range of function:
$$S(x, y, a) \geq 0, \forall x, y \in \mathbb{R}, a \neq 0$$
References
Gneiting T (2011) Making and evaluating point forecasts.
Journal of the American Statistical Association106(494):746--762.
tools:::Rd_expr_doi("10.1198/jasa.2011.r10138").
Varian HR (1975) A Bayesian approach to real estate assessment. In: Fienberg SE,
Zellner A(eds) Studies in Bayesian Econometrics and Statistics in Honor of
Leonard J. Savage. Amsterdam: North-Holland, pp 195--208.
Zellner A (1986) Bayesian estimation and prediction using asymmetric loss
functions. Journal of the American Statistical Association81(394):446--451. tools:::Rd_expr_doi("10.1080/01621459.1986.10478289").