The mean absolute error is defined by:
$$S(\textbf{\textit{x}}, \textbf{\textit{y}}) := (1/n)
\sum_{i = 1}^{n} L(x_i, y_i)$$
where
$$\textbf{\textit{x}} = (x_1, ..., x_n)^\mathsf{T}$$
$$\textbf{\textit{y}} = (y_1, ..., y_n)^\mathsf{T}$$
and
$$L(x, y) := |x - y|$$
Domain of function:
$$\textbf{\textit{x}} \in \mathbb{R}^n$$
$$\textbf{\textit{y}} \in \mathbb{R}^n$$
Range of function:
$$S(\textbf{\textit{x}}, \textbf{\textit{y}}) \geq 0,
\forall \textbf{\textit{x}}, \textbf{\textit{y}} \in \mathbb{R}^n$$