Learn R Programming

scoringfunctions (version 1.1)

meanlog_if: Log-transformed identification function

Description

The function meanlog_if computes the log-transformed identification function, when \(y\) materialises and \(\exp(\textnormal{E}_F[\log(Y)])\) is the predictive functional.

The log-transformed identification function is defined in Tyralis and Papacharalampous (2025).

Usage

meanlog_if(x, y)

Value

Vector of values of the log-transformed identification function.

Arguments

x

Predictive \(\exp(\textnormal{E}_F[\log(Y)])\) functional. It can be a vector of length \(n\) (must have the same length as \(y\)).

y

Realisation (true value) of process. It can be a vector of length \(n\) (must have the same length as \(x\)).

Details

The mean identification function is defined by:

$$V(x, y) := \log(x) - \log(y)$$

Domain of function:

$$x > 0$$

$$y > 0$$

Range of function:

$$V(x, y) \in \mathbb{R}, \forall x, y > 0$$

References

Tyralis H, Papacharalampous G (2025) Transformations of predictions and realizations in consistent scoring functions. tools:::Rd_expr_doi("10.48550/arXiv.2502.16542").

Examples

Run this code
# Compute the log-transformed identification function.

df <- data.frame(
    y = rep(x = 2, times = 3),
    x = 1:3
)

df$meanlog_if <- meanlog_if(x = df$x, y = df$y)

Run the code above in your browser using DataLab