The Nash-Sutcliffe efficiency is defined by:
$$S_{\textnormal{skill}}(\textbf{\textit{x}}, \textbf{\textit{y}}) :=
1 - S_{\textnormal{meth}}(\textbf{\textit{x}}, \textbf{\textit{y}}) /
S_{\textnormal{ref}}(\textbf{\textit{x}}, \textbf{\textit{y}})$$
where
$$\textbf{\textit{x}} = (x_1, ..., x_n)^\mathsf{T}$$
$$\textbf{\textit{y}} = (y_1, ..., y_n)^\mathsf{T}$$
$$\textbf{1} = (1, ..., 1)^\mathsf{T}$$
$$\overline{\textbf{\textit{y}}} :=
(1/n) \textbf{1}^\mathsf{T} \textbf{\textit{y}} =
(1/n) \sum_{i = 1}^{n} y_i$$
$$L(x, y) := (x - y)^2$$
and the predictions of the method of interest as well as the reference
method are evaluated respectively by:
$$S_{\textnormal{meth}}(\textbf{\textit{x}}, \textbf{\textit{y}}) :=
(1/n) \sum_{i = 1}^{n} L(x_i, y_i)$$
$$S_{\textnormal{ref}}(\textbf{\textit{x}}, \textbf{\textit{y}}) :=
(1/n) \sum_{i = 1}^{n} L(\overline{\textbf{\textit{y}}}, y_i)$$
Domain of function:
$$\textbf{\textit{x}} \in \mathbb{R}^n$$
$$\textbf{\textit{y}} \in \mathbb{R}^n$$
Range of function:
$$S(\textbf{\textit{x}}, \textbf{\textit{y}}) \leq 1,
\forall \textbf{\textit{x}}, \textbf{\textit{y}} \in \mathbb{R}^n$$