obsweighted_sf: Observation-weighted scoring function
Description
The function obsweighted_sf computes the observation-weighted scoring function
when \(y\) materialises and \(x\) is the predictive
\(\dfrac{\textnormal{E}_F [Y^{2}]}{\textnormal{E}_F [Y]}\) functional.
The observation-weighted scoring function is defined in p. 752 in
Gneiting (2011).
Usage
obsweighted_sf(x, y)
Value
Vector of observation-weighted errors.
Arguments
x
Predictive \(\dfrac{\textnormal{E}_F [Y^{2}]}{\textnormal{E}_F [Y]}\)
functional (prediction). It can be a vector of length \(n\) (must have the
same length as \(y\)).
y
Realisation (true value) of process. It can be a vector of length
\(n\) (must have the same length as \(x\)).
Details
The observation-weighted scoring function is defined by:
$$S(x, y) := y (x - y)^{2}$$
Domain of function:
$$x > 0$$
$$y > 0$$
Range of function:
$$S(x, y) \geq 0, \forall x, y > 0$$
References
Gneiting T (2011) Making and evaluating point forecasts.
Journal of the American Statistical Association106(494):746--762.
tools:::Rd_expr_doi("10.1198/jasa.2011.r10138").