Learn R Programming

scoringfunctions (version 1.1)

scoringfunctions-package: Overview of the functions in the scoringfunctions package

Description

The scoringfunctions package implements consistent scoring (loss) functions and identification functions

Arguments

1. Scoring functions

1.1. Consistent scoring functions for one-dimensional functionals

\(\textit{1.1.1. Consistent scoring functions for the mean}\)

bregman1_sf: Bregman scoring function (type 1)

bregman2_sf: Bregman scoring function (type 2, Patton scoring function)

bregman3_sf: Bregman scoring function (type 3, QLIKE scoring function)

bregman4_sf: Bregman scoring function (type 4, Patton scoring function)

serr_sf: Squared error scoring function

\(\textit{1.1.2. Consistent scoring functions for expectiles}\)

expectile_sf: Asymmetric piecewise quadratic scoring function (expectile scoring function, expectile loss function)

\(\textit{1.1.3. Consistent scoring functions for the median}\)

aerr_sf: Absolute error scoring function

maelog_sf: MAE-LOG scoring function

maesd_sf: MAE-SD scoring function

\(\textit{1.1.4. Consistent scoring functions for quantiles}\)

gpl1_sf: Generalized piecewise linear power scoring function (type 1)

gpl2_sf: Generalized piecewise linear power scoring function (type 2)

quantile_sf: Asymmetric piecewise linear scoring function (quantile scoring function, quantile loss function)

\(\textit{1.1.5. Consistent scoring functions for Huber functionals}\)

ghuber_sf: Generalized Huber scoring function

huber_sf: Huber scoring function

\(\textit{1.1.6. Consistent scoring functions for other functionals}\)

aperr_sf: Absolute percentage error scoring function

bmedian_sf: \(\beta\)-median scoring function

linex_sf: LINEX scoring function

lqmean_sf: \(L_q\)-mean scoring function

lqquantile_sf: \(L_q\)-quantile scoring function

nmoment_sf: \(n\)-th moment scoring function

obsweighted_sf: Observation-weighted scoring function

relerr_sf: Relative error scoring function (MAE-PROP scoring function)

serrexp_sf: Squared error exp scoring function

serrlog_sf: Squared error log scoring function

serrpower_sf: Squared error of power transformations scoring function

serrsq_sf: Squared error of squares scoring function

sperr_sf: Squared percentage error scoring function

srelerr_sf: Squared relative error scoring function

1.2. Consistent scoring functions for two-dimensional functionals

interval_sf: Interval scoring function (Winkler scoring function)

mv_sf: Mean - variance scoring function

1.3. Consistent scoring functions for multi-dimensional functionals

errorspread_sf: Error - spread scoring function

2. Realised (average) score functions

2.1. Realised (average) score functions for one-dimensional functionals

\(\textit{2.1.1. Realised (average) score functions for the mean}\)

mse: Mean squared error (MSE)

\(\textit{2.1.2. Realised (average) score functions for expectiles}\)

expectile_rs: Realised expectile score

\(\textit{2.1.3. Realised (average) score functions for the median}\)

mae: Mean absolute error (MAE)

\(\textit{2.1.4. Realised (average) score functions for quantiles}\)

quantile_rs: Realised quantile score

\(\textit{2.1.5. Realised (average) score functions for Huber functionals}\)

huber_rs: Mean Huber score

\(\textit{2.1.6. Realised (average) score functions for other functionals}\)

mape: Mean absolute percentage error (MAPE)

mre: Mean relative error (MRE)

mspe: Mean squared percentage error (MSPE)

msre: Mean squared relative error (MSRE)

3. Skill score functions

3.1. Skill score functions for one-dimensional functionals

\(\textit{3.1.1. Skill score functions for the mean}\)

nse: Nash-Sutcliffe efficiency (NSE)

4. Identification functions

4.1. Identification functions for one-dimensional functionals

expectile_if: Expectile identification function

hubermean_if: Huber mean identification function

huberquantile_if: Huber quantile identification function

mean_if: Mean identification function

meanlog_if: Log-transformed identification function

nmoment_if: \(n\)-th moment identification function

quantile_if: Quantile identification function

4.2. Identification functions for two-dimensional functionals

mv_if: Mean - variance identification function

5. Functions for sample levels

quantile_level: Sample quantile level function

6. Supporting functions

capping_function: Capping function

Details

The package functions are categorized into the following classes:

  • 1. Scoring functions

  • 1.1. Consistent scoring functions for one-dimensional functionals

  • 1.2. Consistent scoring functions for two-dimensional functionals

  • 1.3. Consistent scoring functions for multi-dimensional functionals

  • 2. Realised (average) score functions

  • 2.1 Realised (average) score functions for one-dimensional functionals

  • 3. Skill score functions

  • 3.1 Skill score functions for one-dimensional functionals

  • 4. Identification functions

  • 4.1. Identification functions for one-dimensional functionals

  • 4.2. Identification functions for two-dimensional functionals

  • 5. Functions for sample levels

  • 6. Supporting functions

.