The function serr_sf computes the squared error scoring function when \(y\)
materialises and \(x\) is the predictive mean functional.
The squared error scoring function is defined in Table 1 in Gneiting (2011).
Usage
serr_sf(x, y)
Value
Vector of squared errors.
Arguments
x
Predictive mean functional (prediction). It can be a vector of length
\(n\) (must have the same length as \(y\)).
y
Realisation (true value) of process. It can be a vector of length
\(n\) (must have the same length as \(x\)).
Details
The squared error scoring function is defined by:
$$S(x, y) := (x - y)^2$$
Domain of function:
$$x \in \mathbb{R}$$
$$y \in \mathbb{R}$$
Range of function:
$$S(x, y) \geq 0, \forall x, y \in \mathbb{R}$$
References
Gneiting T (2011) Making and evaluating point forecasts.
Journal of the American Statistical Association106(494):746--762.
tools:::Rd_expr_doi("10.1198/jasa.2011.r10138").
Savage LJ (1971) Elicitation of personal probabilities and expectations.
Journal of the American Statistical Association66(337):783--810.
tools:::Rd_expr_doi("10.1080/01621459.1971.10482346").