Learn R Programming

scov (version 0.1.2)

wsce: Computes the weighted structured covariance matrix estimator (WSCE)

Description

This function computes the WSCE estimator for large covariances in the presence of pairwise and spatial covariates from Metodiev et al. (2024).

Usage

wsce(
  pairwise_covariate_matrices,
  adj_matrix,
  dataset,
  mean_estim = NULL,
  sd_estim = NULL,
  grid_size = 100,
  parallelize = FALSE,
  ncores = 8,
  adj_positions = 1:nrow(adj_matrix),
  interaction_effects = list(),
  init = NULL,
  sce_init = NULL,
  use_bootstrap = FALSE,
  num_bootstrap_iters = 100,
  seed = 0,
  verbose = TRUE
)

Value

Returns a named list with the following elements:

parm, estimated parameters of pairwise, spatial effects, average_effects, average effects of the covariates, corrmat_estim, estimator of the correlation matrix, covmat_estim, estimator of the covariance matrix, bic, the Bayesian information criterion (BIC), lambda, the asymptotically optimal weight of the WSCE

Arguments

pairwise_covariate_matrices

named list of square matrices

adj_matrix

adjacency matrix of the spatial covariate

dataset

the dataset given in matrix form

mean_estim

mean vector estimate

sd_estim

standard deviation vector estimate

grid_size

grid-size for spatial effect

parallelize

uses parallel-processing if TRUE

ncores

number of cores for the parallelization

adj_positions

positions within the adjacency matrix

interaction_effects

list of interaction effects

init

the initialization parameter vector

sce_init

the sce-initialization parameter vector

use_bootstrap

uses bootstrapping if TRUE

num_bootstrap_iters

number of bootstrap simulations

seed

a seed

verbose

prints progress if TRUE

References

Metodiev, M., Perrot-Dockès, M., Ouadah, S., Fosdick, B. K., Robin, S., Latouche, P., & Raftery, A. E. (2024). A Structured Estimator for large Covariance Matrices in the Presence of Pairwise and Spatial Covariates. arXiv preprint arXiv:2411.04520.