Learn R Programming

sctransform (version 0.3.2)

smooth_via_pca: Smooth data by PCA

Description

Perform PCA, identify significant dimensions, and reverse the rotation using only significant dimensions.

Usage

smooth_via_pca(
  x,
  elbow_th = 0.025,
  dims_use = NULL,
  max_pc = 100,
  do_plot = FALSE,
  scale. = FALSE
)

Arguments

x

A data matrix with genes as rows and cells as columns

elbow_th

The fraction of PC sdev drop that is considered significant; low values will lead to more PCs being used

dims_use

Directly specify PCs to use, e.g. 1:10

max_pc

Maximum number of PCs computed

do_plot

Plot PC sdev and sdev drop

scale.

Boolean indicating whether genes should be divided by standard deviation after centering and prior to PCA

Value

Smoothed data

Examples

Run this code
# NOT RUN {
vst_out <- vst(pbmc)
y_smooth <- smooth_via_pca(vst_out$y, do_plot = TRUE)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab