Learn R Programming

sdcMicro (version 2.6.3)

dUtility: data utility

Description

IL1s data utility.

Usage

dUtility(x, xm, method="IL1")

Arguments

x
original data
xm
perturbed data
method
method IL1 or eigen. More methods are implemented in summary.micro()

Value

  • data utility

Details

The standardised distances of the perturbed data values to the original ones are measured. Measure IL1 measures the distances between the original values and the perturbed ones, scaled by the standard deviation. Method eigen and robeigen compares the eigenvalues and robust eigenvalues form the original data and the perturbed data.

References

for IL1s: see http://vneumann.etse.urv.es/publications/sci/lncs3050Outlier.pdf, Templ, M. and Meindl, B., Robust Statistics Meets {SDC}: New Disclosure Risk Measures for Continuous Microdata Masking, Lecture Notes in Computer Science, Privacy in Statistical Databases, vol. 5262, pp. 113-126, 2008.

See Also

dRisk, dRiskRMD

Examples

Run this code
data(free1)
m1 <- microaggregation(free1[, 31:34], method="onedims", aggr=3)
m2 <- microaggregation(free1[, 31:34], method="pca", aggr=3)
dRisk(x=free1[, 31:34], xm=m1$blowxm)
dRisk(x=free1[, 31:34], xm=m2$blowxm)
dUtility(x=free1[, 31:34], xm=m1$blowxm)
dUtility(x=free1[, 31:34], xm=m2$blowxm)
data(Tarragona)
x <- Tarragona[, 5:7]
y <- addNoise(x)$xm
dRiskRMD(x, xm=y)
dRisk(x, xm=y)
dUtility(x, xm=y)
dUtility(x, xm=y, method="eigen")
dUtility(x, xm=y, method="robeigen")

Run the code above in your browser using DataLab