## Not run:
# # load micro data for further processing
# sp <- searchpaths()
# fn <- paste(sp[grep("sdcTable", sp)], "/data/microData2.RData", sep="")
# microData <- get(load(fn))
#
# # table1: defined by variables 'gender' and 'ecoOld'
# microData1 <- microData[,c(2,3,5)]
#
# # table2: defined by variables 'region', 'gender' and 'ecoNew'
# microData2 <- microData[,c(1,2,4,5)]
#
# # we need to create information on the hierarchies
# # variable 'region': exists only in microDat2
# dim.region <- data.frame(h=c('@','@@','@@'), l=c('Tot', 'R1','R2'))
#
# # variable 'gender': exists in both datasets
# dim.gender <- data.frame(h=c('@','@@','@@'), l=c('Tot', 'm','f'))
#
# # variable 'ecoOld': exists only in microDat1
# dim.ecoOld <- data.frame(
# h=c('@','@@','@@@','@@@','@@','@@@','@@@'),
# l=c('Tot','A','Aa','Ab','B','Ba','Bb'))
#
# # variable 'ecoNew': exists only in microDat2
# dim.ecoNew <- data.frame(
# h=c('@','@@','@@@','@@@','@@@','@@','@@@','@@@','@@@'),
# l=c('Tot','C','Ca','Cb','Cc','D','Da','Db','Dc'))
#
# # creating objects holding information on dimensions
# dimList1 <- list(gender=dim.gender, ecoOld=dim.ecoOld)
# dimList2 <- list(region=dim.region, gender=dim.gender, ecoNew=dim.ecoNew)
#
# # creating input objects for further processing. For details have a look at
# # \code{\link{makeProblem}}.
# problem1 <- makeProblem(data=microData1, dimList=dimList1, dimVarInd=c(1,2),
# numVarInd=3)
# problem2 <- makeProblem(data=microData2, dimList=dimList2, dimVarInd=c(1,2,3),
# numVarInd=4)
#
# # the cell specified by gender=='Tot' and ecoOld=='A'
# # is one of the common cells! -> we mark it as primary suppression
# problem1 <- changeCellStatus(problem1, characteristics=c('Tot', 'A'),
# varNames=c('gender','ecoOld'), rule='u', verbose=FALSE)
#
# # the cell specified by region=='Tot' and gender=='f' and ecoNew=='C'
# # is one of the common cells! -> we mark it as primary suppression
# problem2 <- changeCellStatus(problem2, characteristics=c('Tot', 'f', 'C'),
# varNames=c('region','gender', 'ecoNew'), rule='u', verbose=FALSE)
#
# # specifying input to define common cells
# commonCells <- list()
#
# # variable "gender"
# commonCells$v.gender <- list()
# commonCells$v.gender[[1]] <- 'gender' # variable name in 'problem1'
# commonCells$v.gender[[2]] <- 'gender' # variable name in 'problem2'
# # 'gender' has equal characteristics on both datasets -> keyword 'ALL'
# commonCells$v.gender[[3]] <- 'ALL'
#
# # variable: ecoOld and ecoNew
# commonCells$v.eco <- list()
# commonCells$v.eco[[1]] <- 'ecoOld' # variable name in 'problem1'
# commonCells$v.eco[[2]] <- 'ecoNew' # variable name in 'problem2'
#
# # vector of common characteristics: A and B in variable 'ecoOld' in 'problem1'
# commonCells$v.eco[[3]] <- c("A","B")
# # correspond to characteristics 'C' and 'D' in variable 'ecoNew' in 'problem2'
# commonCells$v.eco[[4]] <- c("C","D")
#
# # protect the linked data
# result <- protectLinkedTables(problem1, problem2, commonCells, method='HITAS', verbose=TRUE)
#
# # having a look at the results
# result.tab1 <- result[[1]]
# result.tab2 <- result[[2]]
# summary(result.tab1)
# summary(result.tab2)
# ## End(Not run)
Run the code above in your browser using DataLab