BBridge(x=0, y=0, t0=0, T=1, N=100)
BM(x=0, t0=0, T=1, N=100)
GBM(x=1, r=0, sigma=1, T=1, N=100)
t0
.T
.[t0,T]
.ts
objectts
object containing
a trajectory of the process calculated on a grid of N+1
equidistant points between t0
and T
; i.e.,
t[i] = t0 + (T-t0)*i/N
, i in 0:N
. t0=0
for the
geometric Brownian motion.The function BBridge
returns a trajectory of the Brownian bridge
starting at x
at time t0
and
ending at y
at time T
; i.e.,
$${B(t), t_0 \leq t \leq T | B(t_0)=x, B(T)=y}.$$
The function BM
returns
a trajectory of the translated
Brownian motion $B(t), t \geq 0 | B(t_0)=x$;
i.e., $x+B(t-t_0)$ for t >= t0
.
The standard Brownian motion is obtained
choosing x=0
and t0=0
(the default values).
The function GBM
returns a trajectory of the geometric Brownian motion
starting at x
at time t0=0
; i.e., the process
$$S(t) = x \exp{(r-\sigma^2/2)t + \sigma B(t)}.$$
plot(BM())
plot(BBridge())
plot(GBM())
Run the code above in your browser using DataLab