Learn R Programming

sde (version 2.0.9)

rsCIR: Cox-Ingersoll-Ross process stationary law

Description

Density, distribution function, quantile function, and random generation of the stationary law for the Cox-Ingersoll-Ross process.

Usage

dsCIR(x, theta, log = FALSE)
psCIR(x, theta, lower.tail = TRUE, log.p = FALSE) 
qsCIR(p, theta, lower.tail = TRUE, log.p = FALSE)
rsCIR(n=1, theta)

Arguments

x
vector of quantiles.
p
vector of probabilities.
theta
parameter of the Cox-Ingersoll-Ross process; see details.
n
number of random numbers to generate from the conditional distribution.
log, log.p
logical; if TRUE, probabilities $p$ are given as $\log(p)$.
lower.tail
logical; if TRUE (default), probabilities are P[X <= x]<="" code="">; otherwise P[X > x].

Value

  • xa numeric vector

Details

This function returns quantities related to the stationary law of the process solution of $${\rm d}X_t = (\theta_1 - \theta_2 X_t){\rm d}t + \theta_3\sqrt{X_t} {\rm d}W_t.$$

Constraints: $2\theta_1 > \theta_3^2$, all $\theta$ positive.

References

Cox, J.C., Ingersoll, J.E., Ross, S.A. (1985) A theory of the term structure of interest rates, Econometrica, 53, 385-408.

See Also

rsCIR

Examples

Run this code
rsCIR(n=1, theta=c(6,2,1))

Run the code above in your browser using DataLab