Learn R Programming

⚠️There's a newer version (5.4.1) of this package.Take me there.

secr (version 2.10.0)

Spatially Explicit Capture-Recapture

Description

Functions to estimate the density and size of a spatially distributed animal population sampled with an array of passive detectors, such as traps, or by searching polygons or transects. Models incorporating distance-dependent detection are fitted by maximizing the likelihood. Tools are included for data manipulation and model selection.

Copy Link

Version

Install

install.packages('secr')

Monthly Downloads

1,565

Version

2.10.0

License

GPL (>= 2)

Maintainer

Murray Efford

Last Published

December 7th, 2015

Functions in secr (2.10.0)

PG

Telemetry Fixes in Polygons
hcov

Hybrid Mixture Model
OVpossum

Orongorongo Valley Brushtail Possums
derived

Derived Parameters of Fitted SECR Model
AIC.secr

Compare SECR Models
D.designdata

Construct Density Design Data
polyarea

Area of Polygon(s)
capthist.parts

Dissect Spatial Capture History Object
Dsurface

Density Surfaces
plot.popn

Plot popn Object
join

Combine or Split Sessions of capthist Object
esa.plot

Mask Buffer Diagnostic Plot
make.capthist

Construct capthist Object
autoini

Initial Parameter Values for SECR
contour

Contour Detection Probability
sim.popn details

Specifying a Dynamic Population
distancetotrap

Distance To Nearest Detector
LLsurface.secr

Plot likelihood surface
fx.total

Activity Centres of Detected and Undetected Animals
homerange

Home Range Statistics
SPACECAP

Exchange data with SPACECAP package
covariates

Covariates Attribute
ellipse.secr

Confidence Ellipses
detectfn

Detection Functions
hornedlizard

Flat-tailed Horned Lizard Dataset
reduce.capthist

Combine Occasions Or Detectors
sim.capthist

Simulate Detection Histories
deviance

Deviance of fitted secr model and residual degrees of freedom
strip.legend

Colour Strip Legend
popn

Population Object
secr.model

Spatially Explicit Capture--Recapture Models
ip.secr

Spatially Explicit Capture--Recapture by Inverse Prediction
closedN

Closed population estimates
plot.mask

Plot Habitat Mask, Density or Resource Surface
deleteMaskPoints

Edit Mask Points
RMarkInput

Convert Data to RMark Input Format
closure.test

Closure tests
FAQ

Frequently Asked Questions, And Others
stoatDNA

Stoat DNA Data
transformations

Transform Point Array
rbind.traps

Combine traps Objects
plot.capthist

Plot Detection Histories
BUGS

Convert Data To Or From BUGS Format
expected.n

Expected Number of Individuals
rbind.popn

Combine popn Objects
read.capthist

Import or export data
secrdemo

SECR Models Fitted to Demonstration Data
head

First or Last Part of an Object
session

Session Vector
empirical.varD

Empirical Variance of H-T Density Estimate
housemouse

House mouse live trapping data
ovenbird

Ovenbird Mist-netting Dataset
make.systematic

Construct Systematic Detector Design
detector

Detector Type
par.secr.fit

Fit Multiple SECR Models
print.traps

Print Detectors
signalmatrix

Reformat Signal Data
capthist

Spatial Capture History Object
skink

Skink Pitfall Data
trim

Drop Unwanted List Components
spacing

Detector or Mask Spacing
CV

Coefficient of Variation
addTelemetry

Combine Telemetry and Detection Data
model.average

Averaging of SECR Models Using Akaike's Information Criterion
reduce

Combine Columns
ovensong

Ovenbird Acoustic Dataset
print.capthist

Print Detections
region.N

Population Size
rectangularMask

Rectangular Mask
discretize

Rasterize Area Search or Transect Data
subset.mask

Subset Mask Object
sort.capthist

Sort Rows of capthist or mask Object
subset.traps

Subset traps Object
predict.secr

SECR Model Predictions
score.test

Score Test for SECR Models
addSightings

Mark-resight Data
make.tri

Build Detector Array on Triangular or Hexagonal Grid
circular

Circular Probability
coef.secr

Coefficients of secr Object
clone

Replicate Rows
plot.secr

Plot Detection Functions
userdist

Non-Euclidean Distances
secr.fit

Spatially Explicit Capture--Recapture
traps

Detector Array
smooths

Smooth Terms in SECR Models
summary.traps

Summarise Detector Array
summary.capthist

Summarise Detections
addCovariates

Add Covariates to Mask or Traps
Rsurface

Smoothed Resource Surface
logmultinom

Multinomial Coefficient of SECR Likelihood
confint.secr

Profile Likelihood Confidence Intervals
cluster

Detector Clustering
randomHabitat

Random Landscape
read.telemetry

Import Radio Fixes
secrtest

Goodness-of-fit Test Results
Parallel

Multi-core Processing
make.traps

Build Detector Array
rbind.capthist

Combine capthist Objects
ms

Multi-session Objects
snip

Slice Transect Into Shorter Sections
fxi

Probability Density of Home Range Centre
details

Detail Specification for secr.fit
deermouse

Deermouse Live-trapping Datasets
secr.model.detection

Models for Detection Parameters
LR.test

Likelihood Ratio Test
usage

Detector Usage
summary.mask

Summarise Habitat Mask
make.mask

Build Habitat Mask
write.captures

Write Data to Text File
mask

Mask Object
trap.builder

Complex Detector Layouts
writeGPS

Upload to GPS
logit

Logit Transformation
suggest.buffer

Mask Buffer Width
read.mask

Read Habitat Mask From File
utility

Utility Functions
read.traps

Read Detector Data From File
mask.check

Mask Diagnostics
predictDsurface

Predict Density Surface
secr.model.density

Density Models
secr-package

Spatially Explicit Capture--Recapture Models
pmixProfileLL

Mixture Model Check
sighting

Sighting Attributes
pdot

Net Detection Probability
timevaryingcov

Time-varying Detector Covariates
plot.traps

Plot traps Object
speed

Speed Tips
subset.popn

Subset popn Object
traps.info

Detector Attributes
Troubleshooting

Problems in Fitting SECR Models
possum

Brushtail Possum Trapping Dataset
esa.plot.secr

Mask Buffer Diagnostic Plot (internal)
subset.capthist

Subset or Split capthist Object
pointsInPolygon

Points Inside Polygon
secr.design.MS

Construct Detection Model Design Matrices and Lookups
print.secr

Print secr Object
secr.test

Goodness-of-Fit Test
usagePlot

Plot Usage
secr.make.newdata

Create Default Design Data
signal

Signal Fields
sim.popn

Simulate 2-D Population
sim.secr

Simulate From Fitted secr Model
vcov.secr

Variance - Covariance Matrix of SECR Parameters
raster

Create a RasterLayer Object from Mask or Dsurface
verify

Check SECR Data