## Calhoun and Casby (1958) p 3.
## give p = 0.3940, 0.8645, 0.9888
circular.p(1:3)
## halfnormal, hazard-rate and exponential
circular.r ()
circular.r (detectfn = 1, detectpar = list(sigma = 1, z = 4))
circular.r (detectfn = 2)
plot(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01)),
type = 'l', xlab = 'Radius (multiples of sigma)', ylab = 'Probability')
lines(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01), detectfn = 2),
type = 'l', col = 'red')
lines(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01), detectfn = 1,
detectpar = list(sigma = 1,z = 4)), type='l', col='blue')
abline (h = 0.95, lty = 2)
legend (2.8, 0.3, legend=c('halfnormal','hazard-rate, z = 4', 'exponential'),
col=c('black','blue','red'), lty=rep(1,3))
## in this example, a more interesting comparison would use
## sigma = 0.58 for the exponential curve.Run the code above in your browser using DataLab