Learn R Programming

⚠️There's a newer version (5.4.1) of this package.Take me there.

secr (version 2.3.2)

Spatially explicit capture-recapture

Description

Functions to estimate the density and size of a spatially distributed animal population sampled with an array of passive detectors, such as traps, or by searching polygons or transects. Models incorporating distance-dependent detection are fitted by maximizing the likelihood. Tools are included for data manipulation and model selection.

Copy Link

Version

Install

install.packages('secr')

Monthly Downloads

1,565

Version

2.3.2

License

GPL (>= 2)

Maintainer

Murray Efford

Last Published

May 15th, 2012

Functions in secr (2.3.2)

logit

Logit Transformation
secr.fit

Spatially Explicit Capture--Recapture
secr.make.newdata

Create Default Design Data
addCovariates

Add Covariates to Mask or Traps
traps.info

Detector Attributes
subset.capthist

Subset or Split capthist Object
read.capthist

Import or export data
deermouse

Deermouse Live-trapping Datasets
FAQ

Frequently Asked Questions, And Others
ellipse.secr

Confidence ellipse
D.designdata

Construct Density Design Data
mask.check

Mask Diagnostics
join

Combine or Split Sessions of capthist Object
BUGS

Convert Data To Or From BUGS Format
make.systematic

Construct Systematic Detector Design
plot.capthist

Plot Detection Histories
ovensong

Ovenbird Acoustic Dataset
model.average

Model averaging for SECR Models
secr.design.MS

Construct Detection Model Design Matrices and Lookups
rectangularMask

Rectangular Mask
plot.secr

Plot Detection Functions
print.traps

Print Detectors
region.N

Population Size
closure.test

Closure tests
possum

Brushtail Possum Trapping Dataset
make.mask

Build Habitat Mask
rbind.capthist

Combine capthist Objects
skink

Skink Pitfall Data
rbind.traps

Combine traps Objects
polyarea

Area of Polygon(s)
capthist.parts

Dissect Spatial Capture History Object
usage

Detector Usage
secr.model.detection

Models for Detection Parameters
make.tri

Build Detector Array on Triangular or Hexagonal Grid
housemouse

House mouse live trapping data
score.test

Score Test for SECR Models
predictDsurface

Predict Density Surface
sim.capthist

Simulate Detection Histories
summary.traps

Summarise Detector Array
make.capthist

Construct capthist Object
read.mask

Read Habitat Mask From File
sort.capthist

Sort Rows of capthist Object
spacing

Detector or Mask Spacing
troubleshooting

Problems in Fitting SECR Models
LR.test

Likelihood Ratio Test
writeGPS

Upload to GPS
rbind.popn

Combine popn Objects
deviance

Deviance of fitted secr model and residual degrees of freedom
secrdemo

SECR Models Fitted to Demonstration Data
circular

Circular Probability
secr.model.density

Density Models
write.captures

Write Data to Text File
sim.secr

Simulate From Fitted secr Model
autoini

Initial Parameter Values for SECR
summary.capthist

Summarise Detections
cluster

Detector Clustering
traps

Detector Array
trim

Drop Unwanted List Components
print.capthist

Print Detections
fxi

Probability Density of Home Range Centre
transformations

Transform Point Array
closedN

Closed population estimates
read.traps

Read Detector Data From File
esa.plot.secr

Mask Buffer Diagnostic Plot (internal)
secr.model

Spatially Explicit Capture--Recapture Models
expected.n

Expected Number of Individuals
logmultinom

Multinomial Coefficient of SECR Likelihood
coef.secr

Coefficients of secr Object
distancetotrap

Distance To Nearest Detector
contour

Contour Detection Probability
ovenbird

Ovenbird Mist-netting Dataset
popn

Population Object
plot.popn

Plot popn Object
detector

Detector Type
session

Session Vector
AIC.secr

Compare SECR Models
capthist

Spatial Capture History Object
pointsInPolygon

Points Inside Polygon
suggest.buffer

Mask Buffer Width
RMarkInput

Convert Data to RMark Input Format
covariates

Covariates Attribute
reduce

Combine Columns
esa.plot

Mask Buffer Diagnostic Plot
verify

Check SECR Data
subset.mask

Subset Mask Object
subset.popn

Subset popn Object
ip.secr

Spatially Explicit Capture--Recapture by Inverse Prediction
pdot

Net Detection Probability
subset.traps

Subset traps Object
sim.popn

Simulate 2-D Population
stoatDNA

Stoat DNA Data
derived

Derived Parameters of Fitted SECR Model
confint.secr

Profile Likelihood Confidence Intervals
detectfn

Detection Functions
empirical.varD

Empirical Variance of H-T Density Estimate
homerange

Home Range Statistics
head

First or Last Part of an Object
mask

Mask Object
Dsurface

Density Surfaces
plot.traps

Plot traps Object
print.secr

Print secr Object
secr-package

Spatially Explicit Capture--Recapture Models
trap.builder

Complex Detector Layouts
LLsurface.secr

Plot likelihood surface
SPACECAP

Exchange data with SPACECAP package
hornedlizard

Flat-tailed Horned Lizard Dataset
make.traps

Build Detector Array
ms

Multi-session Objects
plot.mask

Plot Habitat Mask or Density Surface
predict.secr

SECR Model Predictions
reduce.capthist

Combine Occasions Or Convert Detector Types
randomHabitat

Random Landscape
summary.mask

Summarise Habitat Mask
vcov.secr

Variance - Covariance Matrix of SECR Parameters