
Last chance! 50% off unlimited learning
Sale ends in
circular.r (p = 0.95, detectfn = 0, sigma = 1, detectpar = NULL)
circular.p (r = 1, detectfn = 0, sigma = 1, detectpar = NULL)
circular.r
is the quantile function of the specified circular
bivariate distribution (analogous to qnorm
, for example). The
quantity calculated by circular.r
is sometimes called `circular
error probable' (see Note).
For detection functions with two parameters (intercept and scale) it is
enough to provide sigma
. Otherwise, detectpar
should be a
named list including parameter values for the requested detection
function (g0 may be omitted, and order does not matter).detectfn
, detectfnplot
## Calhoun and Casby (1958) p 3.
## give p = 0.3940, 0.8645, 0.9888
circular.p(1:3)
## halfnormal, hazard-rate and exponential
circular.r ()
circular.r (detectfn = 1, detectpar = list(sigma = 1, z = 4))
circular.r (detectfn = 2)
plot(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01)),
type = "l", xlab = "Radius (multiples of sigma)", ylab = "Probability")
lines(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01), detectfn = 2),
type = "l", col = "red")
lines(seq(0, 5, 0.01), circular.p(r = seq(0, 5, 0.01), detectfn = 1,
detectpar = list(sigma = 1,z = 4)), type = "l", col = "blue")
abline (h = 0.95, lty = 2)
legend (2.8, 0.3, legend = c("halfnormal","hazard-rate, z = 4", "exponential"),
col = c("black","blue","red"), lty = rep(1,3))
## in this example, a more interesting comparison would use
## sigma = 0.58 for the exponential curve.
Run the code above in your browser using DataLab