# Generate some detection and telemetry data, combine them using
# addTelemetry, and perform analyses
# detectors
te <- make.telemetry()
tr <- make.grid(detector = 'proximity')
# simulated population and 50% telemetry sample
totalpop <- sim.popn(tr, D = 20, buffer = 100)
tepop <- subset(totalpop, runif(nrow(totalpop)) < 0.5)
# simulated detection histories and telemetry
trCH <- sim.capthist(tr, popn = totalpop, renumber = FALSE)
teCH <- sim.capthist(te, popn = tepop, renumber=FALSE,
detectpar = list(g0 = 3, sigma = 25))
combinedCH <- addTelemetry(trCH, teCH)
# summarise and display
summary(combinedCH)
plot(combinedCH, border = 150)
ncapt <- apply(combinedCH,1,sum)
points(totalpop[row.names(combinedCH)[ncapt==0],], pch = 1)
points(totalpop[row.names(combinedCH)[ncapt>0],], pch = 16)
fit.tr <- secr.fit(trCH, CL = TRUE) ## trapping alone
fit.te <- secr.fit(teCH, CL = TRUE, start = log(20)) ## telemetry alone
fit2 <- secr.fit(combinedCH, CL = TRUE) ## combined
fit2a <- secr.fit(combinedCH, CL = TRUE, ## combined, using info
details = list(telemetrysigma = TRUE)) ## on sigma from telemetry
# improved precision when focus on realised population
# (compare CVD)
derived(fit.tr, distribution = 'binomial')
derived(fit2, distribution = 'binomial')
# may also use CL = FALSE
Run the code above in your browser using DataLab