Learn R Programming

secr (version 2.9.0)

detectfn: Detection Functions

Description

A detection function relates the probability of detection $g$ or the expected number of detections $\lambda$ for an animal to the distance of a detector from a point usually thought of as its home-range centre. In secr only simple 2- or 3-parameter functions are used. Each type of function is identified by its number or by a 2--3 letter code (version $\ge$ 2.6.0; see below). In most cases the name may also be used (as a quoted string). Choice of detection function is usually not critical, and the default `HN' is usually adequate. Functions (14)--(18) are parameterised in terms of the expected number of detections $\lambda$, or cumulative hazard, rather than probability. `Exposure' (e.g. Royle and Gardner 2011) is another term for cumulative hazard. This parameterisation is natural for the `count' detector type or if the function is to be interpreted as a distribution of activity (home range). When one of the functions (14)--(18) is used to describe detection probability (i.e., for the binary detectors `single', `multi',`proximity',`polygonX' or `transectX'), the expected number of detections is internally transformed to a binomial probability using $g(d) = 1-\exp(-\lambda(d))$. The hazard halfnormal (14) is similar to the halfnormal exposure function used by Royle and Gardner (2011) except they omit the factor of 2 on $\sigma^2$, which leads to estimates of $\sigma$ that are larger by a factor of sqrt(2). The hazard exponential (16) is identical to their exponential function. llll{ Code Name Parameters Function 0 HN halfnormal g0, sigma $g(d) = g_0 \exp \left(\frac{-d^2} {2\sigma^2} \right)$ 1 HR hazard rate g0, sigma, z $g(d) = g_0 [1 - \exp{ {-(^d/_\sigma)^{-z}} }]$ 2 EX exponential g0, sigma $g(d) = g_0 \exp { -(^d/_\sigma) }$ 3 CHN compound halfnormal g0, sigma, z $g(d) = g_0 [1 - {1 - \exp \left(\frac{-d^2} {2\sigma^2} \right)} ^ z]$ 4 UN uniform g0, sigma $g(d) = g_0, d <= 1="" 5="" 6="" 7="" 8="" 9="" 10="" 11="" 14="" 15="" 16="" 17="" 18="" \sigma;="" g(d)="0," \mbox{otherwise}$="" wex="" w="" exponential="" g0,="" sigma,="" $g(d)="g_0," d="" <="" w;="" \exp="" \left(="" -\frac{d-w}{\sigma}="" \right),="" ann="" annular="" normal="" \lbrace="" \frac{-(d-w)^2}="" {2\sigma^2}="" \rbrace$="" cln="" cumulative="" lognormal="" z="" [="" -="" f="" \lbrace(d-\mu)="" s="" \rbrace="" ]$="" cg="" gamma="" g="" (d;="" k,="" \theta)\rbrace$="" bss="" binary="" signal="" strength="" b0,="" b1="" (="" b_0="" +="" b_1="" d)="" ss="" beta0,="" beta1,="" sds="" f[\lbrace="" c="" (\beta_0="" \beta_1="" s]$="" sss="" spherical="" (d-1)="" \log="" _{10}="" d^2="" )="" hhn="" hazard="" halfnormal="" lambda0,="" sigma="" $\lambda(d)="\lambda_0" \left(\frac{-d^2}="" \right)$;="" hhr="" rate="" (1="" {="" -(^d="" _\sigma)^{-z}="" })$;="" hex="" _\sigma)="" }$;="" han="" \rbrace$;="" hcg="" \theta)\rbrace$;="" }="" functions="" (1)="" and="" (15),="" the="" "hazard-rate"="" detection="" described="" by="" hayes="" buckland="" (1983),="" are="" not="" recommended="" for="" secr="" because="" of="" their="" long="" tail,="" care="" is="" also="" needed="" with="" (2)="" (16).="" function="" (3),="" compound="" halfnormal,="" follows="" efford="" dawson="" (2009).="" (4)="" uniform="" defined="" only="" simulation="" as="" it="" poses="" problems="" likelihood="" maximisation="" gradient="" methods.="" probability="" implies="" hazard,="" so="" there="" no="" separate="" `hun'.="" (7),="" `f'="" standard="" distribution="" $\mu$="" $s$="" mean="" deviation="" on="" log="" scale="" a="" latent="" variable="" representing="" threshold="" distance.="" see="" note="" relationship="" to="" fitted="" parameters="" z.="" (8)="" (18),="" `g'="" shape="" parameter="" k ( = z) and scale parameter $\theta$ ( = sigma/z). See R's pgamma. For functions (9), (10) and (11), `F' is the standard normal distribution function and $c$ is an arbitrary signal threshold. The two parameters of (9) are functions of the parameters of (10) and (11): $b_0 = (\beta_0 - c) / sdS$ and $b_1 = \beta_1 / s$ (see Efford et al. 2009). Note that (9) does not require signal-strength data or $c$. Function (11) includes an additional `hard-wired' term for sound attenuation due to spherical spreading. Detection probability at distances less than 1 m is given by $g(d) = 1 - F \lbrace(c - \beta_0) / sdS \rbrace$ Functions (12) and (13) are undocumented methods for sound attenuation.

Arguments

References

Efford, M. G. and Dawson, D. K. (2009) Effect of distance-related heterogeneity on population size estimates from point counts. Auk 126, 100--111. Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from locations of individuals on a passive detector array. Ecology 90, 2676--2682. Hayes, R. J. and Buckland, S. T. (1983) Radial-distance models for the line-transect method. Biometrics 39, 29--42. Royle, J. A. and Gardner, B. (2011) Hierarchical spatial capture--recapture models for estimating density from trapping arrays. In: A.F. O'Connell, J.D. Nichols & K.U. Karanth (eds) Camera Traps in Animal Ecology: Methods and Analyses. Springer, Tokyo. Pp. 163--190.

See Also

detectfnplot, secr detection models