Learn R Programming

⚠️There's a newer version (5.2.4) of this package.Take me there.

secr (version 2.9.1)

Spatially explicit capture-recapture

Description

Functions to estimate the density and size of a spatially distributed animal population sampled with an array of passive detectors, such as traps, or by searching polygons or transects. Models incorporating distance-dependent detection are fitted by maximizing the likelihood. Tools are included for data manipulation and model selection.

Copy Link

Version

Install

install.packages('secr')

Monthly Downloads

1,470

Version

2.9.1

License

GPL (>= 2)

Maintainer

Murray Efford

Last Published

November 18th, 2014

Functions in secr (2.9.1)

closure.test

Closure tests
BUGS

Convert Data To Or From BUGS Format
cluster

Detector Clustering
polyarea

Area of Polygon(s)
pdot

Net Detection Probability
PG

Telemetry Fixes in Polygons
details

Detail Specification for secr.fit
RMarkInput

Convert Data to RMark Input Format
popn

Population Object
deviance

Deviance of fitted secr model and residual degrees of freedom
predictDsurface

Predict Density Surface
secr.make.newdata

Create Default Design Data
fx.total

Activity Centres of Detected and Undetected Animals
LR.test

Likelihood Ratio Test
SPACECAP

Exchange data with SPACECAP package
capthist

Spatial Capture History Object
closedN

Closed population estimates
distancetotrap

Distance To Nearest Detector
capthist.parts

Dissect Spatial Capture History Object
LLsurface.secr

Plot likelihood surface
ms

Multi-session Objects
autoini

Initial Parameter Values for SECR
esa.plot

Mask Buffer Diagnostic Plot
confint.secr

Profile Likelihood Confidence Intervals
par.secr.fit

Fit Multiple SECR Models
plot.secr

Plot Detection Functions
secr.model

Spatially Explicit Capture--Recapture Models
rbind.capthist

Combine capthist Objects
vcov.secr

Variance - Covariance Matrix of SECR Parameters
coef.secr

Coefficients of secr Object
read.traps

Read Detector Data From File
join

Combine or Split Sessions of capthist Object
clone

Replicate Rows
secr.model.density

Density Models
region.N

Population Size
summary.traps

Summarise Detector Array
detectfn

Detection Functions
esa.plot.secr

Mask Buffer Diagnostic Plot (internal)
rbind.popn

Combine popn Objects
print.secr

Print secr Object
expected.n

Expected Number of Individuals
secr-package

Spatially Explicit Capture--Recapture Models
randomHabitat

Random Landscape
CV

Coefficient of Variation
make.capthist

Construct capthist Object
logit

Logit Transformation
secr.fit

Spatially Explicit Capture--Recapture
reduce

Combine Columns
model.average

Averaging of SECR Models Using Akaike's Information Criterion
contour

Contour Detection Probability
secr.test

Goodness-of-Fit Test
make.systematic

Construct Systematic Detector Design
head

First or Last Part of an Object
circular

Circular Probability
strip.legend

Colour Strip Legend
logmultinom

Multinomial Coefficient of SECR Likelihood
read.telemetry

Import Radio Fixes
covariates

Covariates Attribute
suggest.buffer

Mask Buffer Width
ip.secr

Spatially Explicit Capture--Recapture by Inverse Prediction
detector

Detector Type
deermouse

Deermouse Live-trapping Datasets
D.designdata

Construct Density Design Data
OVpossum

Orongorongo Valley Brushtail Possums
ovenbird

Ovenbird Mist-netting Dataset
predict.secr

SECR Model Predictions
make.tri

Build Detector Array on Triangular or Hexagonal Grid
secrdemo

SECR Models Fitted to Demonstration Data
plot.traps

Plot traps Object
Dsurface

Density Surfaces
addCovariates

Add Covariates to Mask or Traps
plot.mask

Plot Habitat Mask, Density or Resource Surface
Rsurface

Smoothed Resource Surface
mask

Mask Object
summary.capthist

Summarise Detections
session

Session Vector
ovensong

Ovenbird Acoustic Dataset
read.mask

Read Habitat Mask From File
timevaryingcov

Time-varying Detector Covariates
empirical.varD

Empirical Variance of H-T Density Estimate
smooths

Smooth Terms in SECR Models
traps

Detector Array
summary.mask

Summarise Habitat Mask
score.test

Score Test for SECR Models
subset.traps

Subset traps Object
transformations

Transform Point Array
trap.builder

Complex Detector Layouts
usagePlot

Plot Usage
snip

Slice Transect Into Shorter Sections
sim.capthist

Simulate Detection Histories
trim

Drop Unwanted List Components
traps.info

Detector Attributes
Troubleshooting

Problems in Fitting SECR Models
secr.model.detection

Models for Detection Parameters
make.mask

Build Habitat Mask
write.captures

Write Data to Text File
hcov

Hybrid Mixture Model
subset.popn

Subset popn Object
plot.capthist

Plot Detection Histories
rbind.traps

Combine traps Objects
secrtest

Goodness-of-fit Test Results
secr.design.MS

Construct Detection Model Design Matrices and Lookups
signalmatrix

Reformat Signal Data
reduce.capthist

Combine Occasions Or Detectors
subset.mask

Subset Mask Object
speed

Speed Tips
utility

Utility Functions
userdist

Non-Euclidean Distances
writeGPS

Upload to GPS
skink

Skink Pitfall Data
AIC.secr

Compare SECR Models
housemouse

House mouse live trapping data
derived

Derived Parameters of Fitted SECR Model
homerange

Home Range Statistics
fxi

Probability Density of Home Range Centre
ellipse.secr

Confidence Ellipses
print.capthist

Print Detections
pointsInPolygon

Points Inside Polygon
print.traps

Print Detectors
sim.secr

Simulate From Fitted secr Model
signal

Signal Fields
spacing

Detector or Mask Spacing
verify

Check SECR Data
read.capthist

Import or export data
sim.popn

Simulate 2-D Population
Parallel

Multi-core Processing
addTelemetry

Combine Telemetry and Detection Data
FAQ

Frequently Asked Questions, And Others
mask.check

Mask Diagnostics
make.traps

Build Detector Array
plot.popn

Plot popn Object
rectangularMask

Rectangular Mask
hornedlizard

Flat-tailed Horned Lizard Dataset
sort.capthist

Sort Rows of capthist Object
subset.capthist

Subset or Split capthist Object
stoatDNA

Stoat DNA Data
usage

Detector Usage
possum

Brushtail Possum Trapping Dataset