Learn R Programming

secr (version 3.0.1)

ellipse.secr: Confidence Ellipses

Description

Plot joint confidence ellipse for two parameters of secr model, or for a distribution of points.

Usage

ellipse.secr(object, par = c("g0", "sigma"), alpha = 0.05,
    npts = 100, plot = TRUE, linkscale = TRUE, add = FALSE,
    col = palette(), ...)

ellipse.bvn(xy, alpha = 0.05, npts = 100, centroid = TRUE, add = FALSE, ...)

Arguments

object
secr object output from secr.fit
par
character vector of length two, the names of two `beta' parameters
alpha
alpha level for confidence intervals
npts
number of points on perimeter of ellipse
plot
logical for whether ellipse should be plotted
linkscale
logical; if FALSE then coordinates will be backtransformed from the link scale
add
logical to add ellipse to an existing plot
col
vector of one or more plotting colours
arguments to pass to plot functions (or polygon() in the case of ellipse.bvn)
xy
2-column matrix of coordinates
centroid
logical; if TRUE the plotted ellipse is a confidence region for the centroid of points in xy

Value

A list containing the x and y coordinates is returned invisibly from either function.

Details

ellipse.secr calculates coordinates of a confidence ellipse from the asymptotic variance-covariance matrix of the beta parameters (coefficients), and optionally plots it.

If linkscale == FALSE, the inverse of the appropriate link transformation is applied to the coordinates of the ellipse, causing it to deform.

If object is a list of secr models then one ellipse is constructed for each model. Colours are recycled as needed.

ellipse.bvn plots a bivariate normal confidence ellipse for the centroid of a 2-dimensional distribution of points (default centroid = TRUE), or a Jennrich and Turner (1969) elliptical home-range model.

References

Jennrich, R. I. and Turner, F. B. (1969) Measurement of non-circular home range. Journal of Theoretical Biology, 22, 227--237.

Examples

Run this code

ellipse.secr(secrdemo.0)

Run the code above in your browser using DataLab