Learn R Programming

⚠️There's a newer version (0.10.0) of this package.Take me there.

see

“Damned are those who believe without seeing”

Installation

Run the following:

install.packages("devtools")
devtools::install_github("easystats/see")
library("see")

Features

Themes

Modern

library(ggplot2)

ggplot(iris, aes(x = Sepal.Width, y = Sepal.Length, color = Species)) +
  geom_point2() +
  theme_modern()

Lucid

library(ggplot2)

ggplot(iris, aes(x = Sepal.Width, y = Sepal.Length, color = Species)) +
  geom_point2() +
  theme_lucid()

Blackboard

library(rstanarm)
library(modelbased)

dat <- rstanarm::stan_glm(Sepal.Width ~ poly(Petal.Length, 2), data = iris) %>%
  modelbased::estimate_link(keep_draws = TRUE, length = 100, draws = 250) %>%
  modelbased::reshape_draws()

p <- ggplot(dat, aes(x = Petal.Length, y = Draw, group = Draw_Group)) +
  geom_line(color = "white", alpha = 0.05) +
  scale_x_continuous(expand = c(0, 0)) +
  scale_y_continuous(expand = c(0, 0))

p + theme_blackboard() 

Abyss

Palettes

This is just one example of the available palettes. See this vignette for a detailed overview of palettes and color scales.

Material design

p1 <- ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) +
  geom_boxplot() +
  theme_modern(axis.text.angle = 45) +
  scale_fill_material_d()

p2 <- ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) +
  geom_violin() +
  theme_modern(axis.text.angle = 45) +
  scale_fill_material_d(palette = "ice")

p3 <- ggplot(iris, aes(x = Petal.Length, y = Petal.Width, color = Sepal.Length)) +
  geom_point2() +
  theme_modern() +
  scale_color_material_c(palette = "rainbow")

Multiple plots

The plots() function allows us to plot the figures side by side.

plots(p1, p2, p3, n_columns = 2)

The plots() function can also be used to add tags (i.e., labels for subfigures).

plots(p1, p2, p3, n_columns = 2, 
      tags = paste("Fig. ", 1:3))

Better looking points

geom_points2() and geom_jitter2() allow points without borders and contour.

normal <- ggplot(iris, aes(x = Petal.Width, y = Sepal.Length)) +
  geom_point(size = 8, alpha = 0.3) +
  theme_modern()

new <- ggplot(iris, aes(x = Petal.Width, y = Sepal.Length)) +
  geom_point2(size = 8, alpha = 0.3) +
  theme_modern()

plots(normal, new, n_columns = 2)

Half-violin Half-dot plot

Create a half-violin half-dot plot, useful for visualising the distribution and the sample size at the same time.

ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) +
  geom_violindot(fill_dots = "black") +
  theme_modern() +
  scale_fill_material_d()

Radar chart (Spider plot)

library(dplyr)
library(tidyr)

data <- iris %>%
  group_by(Species) %>%
  summarise_all(mean) %>%
  pivot_longer(-Species)

data %>%
  ggplot(aes(x = name, y = value, color = Species, group = Species)) +
  geom_polygon(fill = NA, size = 2, show.legend = FALSE) +
  coord_radar(start = -pi/4) +
  theme_minimal()

Plot functions for easystats packages

bayestestR

Plotting functions for the bayestestR package are demonstrated in this vignette.

parameters

Plotting functions for the parameters package are demonstrated in this vignette.

performance

Plotting functions for the performance package are demonstrated in this vignette.

modelbased

Plotting functions for the modelbased package are demonstrated in this vignette.

correlation

Plotting functions for the correlation package are demonstrated in this vignette.

effectsize

Plotting functions for the effectsize package are demonstrated in this vignette.

Copy Link

Version

Install

install.packages('see')

Monthly Downloads

15,998

Version

0.5.1.1

License

GPL-3

Maintainer

Daniel Lüdecke

Last Published

March 11th, 2025

Functions in see (0.5.1.1)

data_plot

Prepare objects for plotting or plot objects
geom_violindot

Half-violin Half-dot plot
.es_names

List of effect size names
geom_poolpoint

Pool ball points
add_plot_attributes

Complete figure with its attributes
coord_radar

Radar coordinate system
geom_point2

Better looking points
geom_violinhalf

Half-violin plot
flat_colors

Extract Flat UI colors as hex codes
material_colors

Extract material design colors as hex codes
palette_bluebrown

Blue-brown design color palette
palette_social

Social color palette
pizza_colors

Extract pizza colors as hex codes
palette_flat

Flat UI color palette
palette_see

See design color palette
plot.see_check_outliers

Plot method for checking outliers
palette_pizza

Pizza color palette
plot.see_check_normality

Plot method for check model for (non-)normality of residuals
plot.see_effectsize_table

Plot method for effect size tables
plot.see_equivalence_test_effectsize

Plot method for (conditional) equivalence testing
plot.see_easycormatrix

Plot method for correlation matrices
palette_material

Material design color palette
palette_metro

Metro color palette
metro_colors

Extract Metro colors as hex codes
plot.see_parameters_pca

Plot method for principal component analysis
plot.see_si

Plot method for support intervals
scale_color_social

Social color palette
plot.see_rope

Plot method for Region of Practical Equivalence
scale_color_see

See color palette
plot.see_parameters_simulate

Plot method for simulated model parameters
plot.see_bayesfactor_models

Plot method for Bayes Factors for model comparison
plot.see_cluster_analysis

Plot method for computing cluster analysis
plot.see_bayesfactor_parameters

Plot method for Bayes Factors for a single parameter
scale_color_pizza

Pizza color palette
scale_color_metro

Metro color palette
plot.see_parameters_distribution

Plot method for describing distributions of vectors
plot.see_parameters_model

Plot method for model parameters
plot.see_easycorrelation

Plot method for Gaussian Graphical Models
plot.see_check_heteroscedasticity

Plot method for (non-)constant error variance checks
plot.see_compare_performance

Plot method for comparing model performances
theme_abyss

Abyss theme
bluebrown_colors

Extract blue-brown colors as hex codes
theme_blackboard

Blackboard dark theme
golden_ratio

Golden Ratio
plot.see_check_distribution

Plot method for classifying the distribution of a model-family
plot.see_check_collinearity

Plot method for multicollinearity checks
GeomViolinHalf

GeomViolinHalf
plot.see_hdi

Plot method for uncertainty or credible intervals
plot.see_n_factors

Plot method for numbers of clusters to extract or factors to retain
plot.see_performance_roc

Plot method for ROC curves
plot.see_estimate_contrasts

Plot method for estimating contrasts
plot.see_check_homogeneity

Plot method for homogeneity of variances checks
see_colors

Extract See colors as hex codes
plots

Multiple plots side by side
scale_color_bluebrown

Blue-brown color palette
plot.see_point_estimate

Plot method for point estimates of posterior samples
theme_radar

Themes for radar plots
social_colors

Extract Social colors as hex codes
plot.see_estimate_density

Plot method for density estimation of posterior samples
plot.see_p_significance

Plot method for practical significance
plot.see_p_direction

Plot method for probability of direction
scale_color_flat

Flat UI color palette
scale_color_material

Material design color palette
theme_lucid

Lucid theme
theme_modern

The easystats' minimal theme