Learn R Programming

seg (version 0.3-3)

segdata: Hypothetical Patterns of Segregation

Description

This data set contains eight different spatial configurations that were used by Morrill (1991) and Wong (1993) to test their segregation measures.

Usage

data(segdata)

Arguments

format

An object of class data.frame. The data set contains 16 columns, representing eight idealised spatial patterns. Each column indicates the following information: rll{ [,1] A1 Pattern A, Group 1 [,2] A2 Pattern A, Group 2 [,3] B1 Pattern B, Group 1 [,4] B2 Pattern B, Group 2 [,5] C1 Pattern C, Group 1 [,6] C2 Pattern C, Group 2 [,7] D1 Pattern D, Group 1 [,8] D2 Pattern D, Group 2 [,9] E1 Pattern E, Group 1 [,10] E2 Pattern E, Group 2 [,11] F1 Pattern F, Group 1 [,12] F2 Pattern F, Group 2 [,13] G1 Pattern G, Group 1 [,14] G2 Pattern G, Group 2 [,15] H1 Pattern H, Group 1 [,16] H2 Pattern H, Group 2 }

source

Morrill, R. L. (1991). On the measure of geographic segregation. Geography Research Forum, 11, 25-36. Wong, D. W. S. (1993). Spatial Indices of Segregation. Urban Studies, 30, 559-572.

Examples

Run this code
require(sp); data(segdata)
grd <- GridTopology(cellcentre.offset=c(0.5,0.5),
                    cellsize=c(1,1), cells.dim=c(10,10))
grd.sp <- as.SpatialPolygons.GridTopology(grd)
pd <- par()
par(mfrow = c(2, 4), mar = c(0, 1, 0, 1))
for (i in 1:8) {
  full <- segdata[,(2*i)-1] == 100
  half <- segdata[,(2*i)-1] == 50
  plot(grd.sp)
  plot(grd.sp[full,], col = "Black", add = TRUE)
  if (any(half))
    plot(grd.sp[half,], col = "Grey", add = TRUE)
  text(5, 11.5, labels = paste("Pattern", LETTERS[i]))
}
par(mfrow = pd$mfrow, mar = pd$mar)

Run the code above in your browser using DataLab