segregation
An R package to calculate entropy-based segregation indices, with a focus on the Mutual Information Index (M).
- calculate total, between, within, and local segregation
- decompose differences in total segregation over time
- estimate standard errors via bootstrapping
- every method returns a tidy data frame (or tibble, if the package is installed) for easy post-processing and plotting
- it’s fast, because it uses the
data.table
package internally
Example
The package provides an easy way to calculate total and local segregation, based on the Mutual Information Index.
library(segregation)
# example dataset with fake data provided by the package
mutual_total(schools00, "school", "race", weight = "n")
#> # A tibble: 3 x 2
#> stat est
#> * <chr> <dbl>
#> 1 M 0.426
#> 2 M_min 0.
#> 3 M_max 1.61
Standard errors can be estimated via boostrapping:
mutual_total(schools00, "school", "race", weight = "n", se = TRUE)
#> ..........
#> # A tibble: 3 x 3
#> stat est se
#> * <chr> <dbl> <dbl>
#> 1 M 0.429 0.000935
#> 2 M_min 0. 0.
#> 3 M_max 1.61 0.
Local segregation (ls
) of racial groups, with group-specific standard
errors:
mutual_local(schools00, "school", "race", weight = "n", se = TRUE)
#> ..........
#> # A tibble: 15 x 4
#> race stat est se
#> <fct> <fct> <dbl> <dbl>
#> 1 asian ls 0.667 0.00674
#> 2 black ls 0.885 0.00259
#> 3 hisp ls 0.782 0.00258
#> 4 white ls 0.184 0.000725
#> 5 native ls 1.53 0.0229
#> 6 asian p 0.0226 0.000124
#> 7 black p 0.190 0.000465
#> 8 hisp p 0.152 0.000317
#> 9 white p 0.628 0.000687
#> 10 native p 0.00745 0.000135
#> 11 asian M_group 0.0151 0.000193
#> 12 black M_group 0.168 0.000354
#> 13 hisp M_group 0.119 0.000336
#> 14 white M_group 0.116 0.000357
#> 15 native M_group 0.0114 0.000101
Decompose the difference in segregation between 2000 and 2005, using the method developed by Mora and Ruiz-Castillo (2009):
mutual_difference(schools00, schools05, "school", "race",
weight = "n", method = "mrc")
#> # A tibble: 6 x 2
#> stat est
#> * <chr> <dbl>
#> 1 M1 0.426
#> 2 M2 0.413
#> 3 diff -0.0122
#> 4 group_marginal 0.00747
#> 5 unit_entropy -0.0641
#> 6 invariant 0.0445
How to install
The package is not on CRAN yet. If you have devtools installed, use
devtools::install_github("elbersb/segregation")
to install the package.
To access the documentation, type
?segregation
Papers using the Mutual information index
(list incomplete)
- DiPrete, T. A., Eller, C. C., Bol, T., & van de Werfhorst, H. G. (2017). School-to-Work Linkages in the United States, Germany, and France. American Journal of Sociology, 122(6), 1869-1938. https://doi.org/10.1086/691327
- Forster, A. G., & Bol, T. (2017). Vocational education and employment over the life course using a new measure of occupational specificity. Social Science Research, 70, 176-197. https://doi.org/10.1016/j.ssresearch.2017.11.004
- Van Puyenbroeck, T., De Bruyne, K., & Sels, L. (2012). More than ‘Mutual Information’: Educational and sectoral gender segregation and their interaction on the Flemish labor market. Labour Economics, 19(1), 1-8. https://doi.org/10.1016/j.labeco.2011.05.002
- Mora, R., & Ruiz-Castillo, J. (2003). Additively decomposable segregation indexes. The case of gender segregation by occupations and human capital levels in Spain. The Journal of Economic Inequality, 1(2), 147-179. https://doi.org/10.1023/A:1026198429377
References on entropy-based segregation indices
Theil, Henri. (1971). Principles of Econometrics. New York: Wiley.
Frankel, D. M., & Volij, O. (2011). Measuring school segregation. Journal of Economic Theory, 146(1), 1-38. https://doi.org/10.1016/j.jet.2010.10.008
Mora, R., & Ruiz-Castillo, J. (2009). The Invariance Properties of the Mutual Information Index of Multigroup Segregation. Research on Economic Inequality, 17, 33-53.
Mora, R., & Ruiz-Castillo, J. (2011). Entropy-based Segregation Indices. Sociological Methodology, 41(1), 159–194. https://doi.org/10.1111/j.1467-9531.2011.01237.x