# \donttest{
## Assuming genotypes are known (typically a bad idea)
glist <- multidog_to_g(
mout = ufit,
ploidy = 4,
type = "all_g",
p1 = "indigocrisp",
p2 = "sweetcrisp")
p1_1 <- glist$p1
p2_1 <- glist$p2
g_1 <- glist$g
multi_lrt(g = g_1, p1 = p1_1, p2 = p2_1)
## Using genotype likelihoods (typically a good idea)
glist <- multidog_to_g(
mout = ufit,
ploidy = 4,
type = "all_gl",
p1 = "indigocrisp",
p2 = "sweetcrisp")
p1_2 <- glist$p1
p2_2 <- glist$p2
g_2 <- glist$g
multi_lrt(g = g_2, p1 = p1_2, p2 = p2_2)
## Offspring genotype likelihoods and parent genotypes known
multi_lrt(g = g_2, p1 = p1_1, p2 = p2_1)
## Offspring genotype likelihoods and no information on parent genotypes
multi_lrt(g = g_2, p1 = NULL, p2 = NULL)
## Parallel computing is supported through the future package
# future::plan(future::multisession, workers = 2)
# multi_lrt(g = g_2, p1 = p1_2, p2 = p2_2)
# future::plan(future::sequential)
# }
Run the code above in your browser using DataLab