# This example is adapted from the SAS manual
S.wh <- read.moments(names=c('Anomia67','Powerless67','Anomia71',
'Powerless71','Education','SEI'))
11.834
6.947 9.364
6.819 5.091 12.532
4.783 5.028 7.495 9.986
-3.839 -3.889 -3.841 -3.625 9.610
-21.899 -18.831 -21.748 -18.775 35.522 450.288
model.wh <- specify.model()
Alienation67 -> Anomia67, NA, 1
Alienation67 -> Powerless67, NA, 0.833
Alienation71 -> Anomia71, NA, 1
Alienation71 -> Powerless71, NA, 0.833
SES -> Education, NA, 1
SES -> SEI, lamb, NA
SES -> Alienation67, gam1, NA
Alienation67 -> Alienation71, beta, NA
SES -> Alienation71, gam2, NA
Anomia67 <-> Anomia67, the1, NA
Anomia71 <-> Anomia71, the1, NA
Powerless67 <-> Powerless67, the2, NA
Powerless71 <-> Powerless71, the2, NA
Education <-> Education, the3, NA
SEI <-> SEI, the4, NA
Anomia67 <-> Anomia71, the5, NA
Powerless67 <-> Powerless71, the5, NA
Alienation67 <-> Alienation67, psi1, NA
Alienation71 <-> Alienation71, psi2, NA
SES <-> SES, phi, NA
sem.wh <- sem(model.wh, S.wh, 932)
mod.indices(sem.wh)
## 5 largest modification indices, A matrix:
## Powerless67:Education Anomia67:Education
## 4.8736 3.8027
## Powerless67:SES Education:Powerless67
## 2.7608 2.4619
## Anomia67:SES
## 2.3122
##
## 5 largest modification indices, P matrix:
## Education:Powerless67 Education:Anomia67
## 6.4028 4.5398
## SES:Powerless67 SES:Anomia67
## 2.7608 2.3122
## SEI:Powerless67
## 1.3185
Run the code above in your browser using DataLab