mod.cfa.tests <- cfa(raw=TRUE)
verbal: x1, x2, x3
math: y1, y2, y3
imps <- miSem(mod.cfa.tests, data=Tests, fixed.x="Intercept", raw=TRUE, seed=12345,
mi.args=list(add.noise=noise.control(post.run.iter=30)))
summary(imps, digits=3)
library(MBESS) # for data
data(HS.data)
# introduce some missing data:
HS <- HS.data[, c(2,7:10,11:15,20:25,26:30)]
set.seed(12345)
r <- sample(301, 100, replace=TRUE)
c <- sample(2:21, 100, replace=TRUE)
for (i in 1:100) HS[r[i], c[i]] <- NA
mod.hs <- cfa()
spatial: visual, cubes, paper, flags
verbal: general, paragrap, sentence, wordc, wordm
memory: wordr, numberr, figurer, object, numberf, figurew
math: deduct, numeric, problemr, series, arithmet
mod.mg <- multigroupModel(mod.hs, groups=c("Female", "Male"))
imps.mg <- miSem(mod.mg, data=HS, group="Gender",
seed=12345, n.iter=50,
mi.args=list(add.noise=noise.control(post.run.iter=30)))
summary(imps.mg, digits=3)Run the code above in your browser using DataLab