
auxiliary(model, aux, fun, ...)
cfa.auxiliary(model, aux, ...)
sem.auxiliary(model, aux, ...)
growth.auxiliary(model, aux, ...)
lavaan.auxiliary(model, aux, ...)
lavaan
object, the parameter table, or lavaan script. If the lavaan
object is provided, the lavaan
object must be evaluated with mean structure."cfa"
, "sem"
, "growth"
, "lavaan"
).lavaan
function.lavaanStar
object which contains the original lavaan
object and the additional values of the null model, which need to be adjusted to account for auxiliary variables.lavaanStar
# Example of confirmatory factor analysis
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
dat <- data.frame(HolzingerSwineford1939, z=rnorm(nrow(HolzingerSwineford1939), 0, 1))
fit <- cfa(HS.model, data=dat, meanstructure=TRUE)
fitaux <- auxiliary(HS.model, aux="z", data=dat, fun="cfa") # Use lavaan script
fitaux <- cfa.auxiliary(fit, aux="z", data=dat) # Use lavaan output
# Example of multiple groups confirmatory factor analysis
fitgroup <- cfa(HS.model, data=dat, group="school", meanstructure=TRUE)
fitgroupaux <- cfa.auxiliary(fitgroup, aux="z", data=dat, group="school")
# Example of path analysis
mod <- ' x5 ~ x4
x4 ~ x3
x3 ~ x1 + x2'
fitpath <- sem(mod, data=dat, fixed.x=FALSE, meanstructure=TRUE) # fixed.x must be FALSE
fitpathaux <- sem.auxiliary(fitpath, aux="z", data=dat)
# Example of full structural equation modeling
dat2 <- data.frame(PoliticalDemocracy, z=rnorm(nrow(PoliticalDemocracy), 0, 1))
model <- '
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + a*y2 + b*y3 + c*y4
dem65 =~ y5 + a*y6 + b*y7 + c*y8
dem60 ~ ind60
dem65 ~ ind60 + dem60
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
'
fitsem <- sem(model, data=dat2, meanstructure=TRUE)
fitsemaux <- sem.auxiliary(fitsem, aux="z", data=dat2, meanstructure=TRUE)
# Example of covariate at the factor level
HS.model.cov <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
visual ~ sex
textual ~ sex
speed ~ sex'
fitcov <- cfa(HS.model.cov, data=dat, fixed.x=FALSE, meanstructure=TRUE)
fitcovaux <- cfa.auxiliary(fitcov, aux="z", data=dat)
# Example of Endogenous variable with single indicator
HS.model.cov2 <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
x7 ~ visual + textual'
fitcov2 <- sem(HS.model.cov2, data=dat, fixed.x=FALSE, meanstructure=TRUE)
fitcov2aux <- sem.auxiliary(fitcov2, aux="z", data=dat)
# Multiple auxiliary variables
HS.model2 <- ' visual =~ x1 + x2 + x3
speed =~ x7 + x8 + x9'
fit <- cfa(HS.model2, data=HolzingerSwineford1939)
fitaux <- cfa.auxiliary(HS.model2, data=HolzingerSwineford1939, aux=c("x4", "x5"))
Run the code above in your browser using DataLab