library(lavaan)
# From the help page of modificationIndices
HS.model <- '
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9
'
fit <- cfa(HS.model, data = HolzingerSwineford1939)
modindices(fit, sort = TRUE, op = "=~")
fit2 <- update(fit, add = "visual =~ x9")
fit3 <- update(fit, add = "textual =~ x3\nvisual =~ x7")
models <- list(Initial = fit,
Model_2 = fit2,
Model_3 = fit3)
fit_cfi <- sapply(models, fitMeasures, fit.measures = "cfi")
fit_tli <- sapply(models, fitMeasures, fit.measures = "tli")
fit_rmsea <- sapply(models, fitMeasures, fit.measures = "rmsea")
# Supply the models as arguments
plot_models_fm(fit, fit2, fit3)
# Plot lines for selected values on a fit measure (CFI by default)
plot_models_fm(fit, fit2, fit3, fit_values = c(.90, .925, .95, fit_cfi))
# Plot the models' values on the fit measures
plot_models_fm(fit, fit2, fit3, include_model_values = TRUE)
# Supply the models as a named list
plot_models_fm(list(A = fit, B = fit2, C = fit3),
fit_values = c(.90, .925, .95))
# Plot the models, fit measure set to TLI
plot_models_fm(fit, fit2, fit3, fit_measure = "tli")
plot_models_fm(fit, fit2, fit3, fit_measure = "tli",
fit_values = c(.90, .925, .95, fit_tli))
plot_models_fm(fit, fit2, fit3, fit_measure = "tli",
include_model_values = TRUE)
# Plot the models, fit measure set to RMSEA
plot_models_fm(fit, fit2, fit3, fit_measure = "rmsea")
plot_models_fm(fit, fit2, fit3, fit_measure = "rmsea",
include_model_values = TRUE)
Run the code above in your browser using DataLab