# Exponential law (log-concave)
PoincareConstant(dfct=dexp,qfct=qexp,pfct=NULL,rate=1,logconcave=TRUE) # log-concave assumption
PoincareConstant(dfct=dexp,qfct=NULL,pfct=pexp,rate=1,optimize.interval=c(0, 15))
# logistic transport approach
# Weibull law (log-concave)
PoincareConstant(dfct=dweibull,qfct=NULL,pfct=pweibull,optimize.interval=c(0, 15),shape=1,scale=1)
# logistic transport approach
## Not run:
# # Triangular law (log-concave)
# library(triangle)
# PoincareConstant(dfct=dtriangle, qfct=qtriangle, pfct=NULL, a=-1, b=1, c=0, logconcave=TRUE)
# # log-concave assumption
# PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, a=-1, b=1, c=0,
# transport="double_exp", optimize.interval=c(-1,1)) # Double-exponential transport approach
# PoincareConstant(dfct=dtriangle, qfct=NULL, pfct=ptriangle, a=-1, b=1, c=0,
# optimize.interval=c(-1,1)) # Logistic transport calculation
#
# # Normal N(0,1) law truncated on [-1.87,+infty]
# PoincareConstant(dfct=dnorm, qfct=qnorm, pfct=pnorm, mean=0, sd=1, logconcave=TRUE,
# transport="double_exp", truncated=TRUE, min=-1.87, max=999) # log-concave assumption
# PoincareConstant(dfct=dtnorm, qfct=qtnorm, pfct=ptnorm, mean=0, sd=1, truncated=TRUE,
# min=-1.87, max=999, transport="double_exp", optimize.interval=c(-1.87,20))
# # Double-exponential transport approach
# PoincareConstant(dfct=dtnorm, qfct=qtnorm, pfct=ptnorm, mean=0, sd=1, truncated=TRUE,
# min=-1.87, max=999, optimize.interval=c(-1.87,20)) # Logistic transport approach
#
#
# # Gumbel law (log-concave)
# library(evd)
# PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=NULL, loc=0, scale=1, logconcave=TRUE,
# transport="double_exp") # log-concave assumption
# PoincareConstant(dfct=dgumbel, qfct=NULL, pfct=pgumbel, loc=0, scale=1,
# transport="double_exp", optimize.interval=c(-3,20)) # Double-exponential transport approach
# PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1,
# optimize.interval=c(-3,20)) # Logistic transport approach
#
# # Truncated Gumbel law (log-concave)
# PoincareConstant(dfct=dgumbel, qfct=qgumbel, pfct=pgumbel, loc=0, scale=1, logconcave=TRUE,
# transport="double_exp", truncated=TRUE, min=-0.92, max=3.56) # log-concave assumption
# PoincareConstant(dfct=dtgumbel, qfct=NULL, pfct=ptgumbel, loc=0, scale=1, truncated=TRUE,
# min=-0.92, max=3.56, transport="double_exp", optimize.interval=c(-0.92,3.56))
# # Double-exponential transport approach
# PoincareConstant(dfct=dtgumbel, qfct=qtgumbel, pfct=ptgumbel, loc=0, scale=1, truncated=TRUE,
# min=-0.92, max=3.56, optimize.interval=c(-0.92,3.56)) # Logistic transport approach
#
# ## End(Not run)
Run the code above in your browser using DataLab