Learn R Programming

sensitivity (version 1.14.0)

PoincareOptimal: Optimal Poincare constants for Derivative-based Global Sensitivity Measures (DGSM)

Description

A DGSM is a sensitivity index relying on the integral (over the space domain of the input variables) of the squared derivatives of a model output with respect to one model input variable. The product between a DGSM and a Poincare Constant (Roustant et al., 2014: Roustant et al., 2016), on the type of probability distribution of the input variable, gives an upper bound of the total Sobol' index corresponding to the same input (Lamboni et al., 2013; Kucherenko and Iooss, 2016). This function provides the optimal Poincare constant as explained in Roustant et al. (2016). It solves numerically the spectral problem corresponding to the Poincare inequality, with Neumann conditions. The differential equation is f'' - V'f'= - lambda f with f'(a) = f'(b) = 0. In addition, all the spectral decomposition can be returned by the function. The information corresponding to the optimal constant is given in the second to last column. IMPORTANT: This program is useless for the two following input variable distributions:
  • uniform on $[min,max]$ interval: The optimal Poincare constant is $(max-min)^2/(pi^2)$.
  • normal with a standard deviation $sd$: The optimal Poincare constant is $sd^2$.

Usage

PoincareOptimal(distr=list("unif",c(0,1)), min=NULL, max=NULL, n = 500, method = c("quadrature", "integral"), only.values = TRUE, plot = FALSE, ...)

Arguments

distr
a list or a function corresponding to the probability distribution.
  • If it is a list, it contains the name of the R distribution of the variable and its parameters. Possible choices are: "unif" (uniform), "norm" (normal), "exp" (exponential), "triangle" (triangular from package triangle), "gumbel" (from package evd), "beta", "gamma", "weibull" and "lognorm" (lognormal). The values of the distribution parameters have to be passed in arguments in the same order than the corresponding R function.
  • If it is a function, it corresponds to the pdf. Notice that the normalizing constant has no impact on the computation of the optimal Poincare constant and can be ommitted.
min
see below
max
[min,max]: interval on which the distribution is truncated. Choose low and high quantiles in case of unbounded distribution. Choose NULL for uniform and triangular distributions
n
number of discretization steps
method
method of integration: "quadrature" (default value) uses the trapez quadrature (close and quicker), "integral" is longer but does not make any approximation
only.values
if TRUE, only eigen values are computed and returned, otherwise both eigenvalues and eigenvectors are returned (default value is TRUE)
plot
logical:if TRUE and only.values=FALSE, plots a minimizer of the Rayleigh ratio (default value is FALSE)
...
additional arguments

Value

PoincareOptimal returns a list containing:

Details

For the uniform, normal, triangular and Gumbel distributions, the optimal constants are computed on the standardized correponding distributions (for a better numerical efficiency). In these cases, the return optimal constant and eigen values correspond to original distributions, while the eigen vectors are not rescaled.

References

O. Roustant, F. Barthe and B. Iooss, Poincare inequalities on intervals - application to sensitivity analysis, Submitted, 2016.

See Also

PoincareConstant

Examples

Run this code


# uniform [0,1]
out <- PoincareOptimal(distr=list("unif",0,1))
print(out$opt)

# truncated standard normal on [-1, 1]
out <- PoincareOptimal(distr=dnorm, min=-1, max=1, plot=TRUE, only.values=FALSE)
print(out$opt)

## Not run: 
# # truncated standard normal on [-1.87, +infty]
# out <- PoincareOptimal(distr=list("norm",0,1), min=-1.87, max=5, method="integral", n=500)
# print(out$opt)
# 
# # truncated Gumbel(0,1) on [-0.92, 3.56]
# out <- PoincareOptimal(distr=list("gumbel",0,1), min=-0.92, max=3.56, method="integral", n=500)
# print(out$opt)
# 
# # symetric triangular [-1,1]
# out <- PoincareOptimal(distr=list("triangle",-1,1,0), min=NULL, max=NULL)
# print(out$opt)
# 
# # Lognormal distribution
# out <- PoincareOptimal(distr=list("lognorm",1,2), min=3, max=10, only.values=FALSE,plot=TRUE, 
#   method="integral")
# print(out$opt)
# 
# ## End(Not run)

Run the code above in your browser using DataLab