sobolTIIpf
implements the pick-freeze estimation of total interaction indices as described in Section 3.3 of Fruth et al. (2014). Total interaction indices (TII) are superset indices of pairs of variables, thus give the total influence of each second-order interaction. The pick-freeze estimation enables the strategy to reuse evaluations of Saltelli (2002). The total costs are $(1+N) \times n$ where $N$ is the number of indices to estimate. Via plotFG
, the TIIs can be visualized in a so-called FANOVA graph as described in section 2.2 of Muehlenstaedt et al. (2012).sobolTIIpf(model = NULL, X1, X2, ...)
"tell"(x, y = NULL, ...)
"print"(x, ...)
"plot"(x, ylim = NULL, ...)
"plotFG"(x)
predict
method,
defining the model to analyze."sobolTIIpf"
storing the state of the
sensitivity study (parameters, data, estimates).model
which are passed
unchanged each time it is called.sobolTIIpf
returns a list of class "sobolTIIpf"
, containing all
the input arguments detailed before, plus the following components:A. Saltelli, 2002, Making best use of model evaluations to compute sensitivity indices, Comput. Phys. Commun., 145, 580-297.
T. Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt, 2012, Data-driven Kriging models based on FANOVA-decomposition, Stat. Comput., 22 (3), 723--738.
sobolTIIlo
# Test case : the Ishigami function
# The method requires 2 samples
n <- 1000
X1 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
X2 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
# sensitivity analysis (the true values are 0, 0.244, 0)
x <- sobolTIIpf(model = ishigami.fun, X1 = X1, X2 = X2)
print(x)
# plot of tiis and FANOVA graph
plot(x)
## Not run:
# library(igraph)
# plotFG(x)
# ## End(Not run)
Run the code above in your browser using DataLab