sobolTIIlo
implements the asymptotically efficient formula of Liu and Owen (2006) for the estimation of total interaction indices as described e.g. in Section 3.4 of Fruth et al. (2014). Total interaction indices (TII) are superset indices of pairs of variables, thus give the total influence of each second-order interaction. The total cost of the method is plotFG
(which uses functions of the package igraph
), the TIIs can be visualized in a so-called FANOVA graph as described in section 2.2 of Muehlenstaedt et al. (2012).
sobolTIIlo(model = NULL, X1, X2, conf = 0.95, …)
# S3 method for sobolTIIlo
tell(x, y = NULL, …)
# S3 method for sobolTIIlo
print(x, …)
# S3 method for sobolTIIlo
plot(x, ylim = NULL, …)
# S3 method for sobolTIIlo
ggplot(x, ylim = NULL, …)
# S3 method for sobolTIIlo
plotFG(x)
a function, or a model with a predict
method,
defining the model to analyze.
the first random sample.
the second random sample.
the confidence level for asymptotic confidence intervals, defaults to 0.95.
a list of class "sobolTIIlo"
storing the state of the
sensitivity study (parameters, data, estimates).
a vector of model responses.
any other arguments for model
which are passed
unchanged each time it is called.
optional, the y limits of the plot.
sobolTIIlo
returns a list of class "sobolTIIlo"
, containing all
the input arguments detailed before, plus the following components:
the matched call.
a data.frame
containing the design of experiments.
a vector of model responses.
the estimation of the overall variance.
the unscaled estimations of the TIIs.
the scaled estimations of the TIIs together with asymptotic confidence intervals.
R. Liu, A. B. Owen, 2006, Estimating mean dimensionality of analysis of variance decompositions, JASA, 101 (474), 712--721.
J. Fruth, O. Roustant, S. Kuhnt, 2014, Total interaction index: A variance-based sensitivity index for second-order interaction screening, J. Stat. Plan. Inference, 147, 212--223.
T. Muehlenstaedt, O. Roustant, L. Carraro, S. Kuhnt, 2012, Data-driven Kriging models based on FANOVA-decomposition, Stat. Comput., 22 (3), 723--738.
# NOT RUN {
# Test case : the Ishigami function
# The method requires 2 samples
n <- 1000
X1 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
X2 <- data.frame(matrix(runif(3 * n, -pi, pi), nrow = n))
# sensitivity analysis (the true values of the scaled TIIs are 0, 0.244, 0)
x <- sobolTIIlo(model = ishigami.fun, X1 = X1, X2 = X2)
print(x)
# plot of tiis and FANOVA graph
plot(x)
library(ggplot2)
ggplot(x)
# }
# NOT RUN {
library(igraph)
plotFG(x)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab