amplify(gamma, lambda)
The curve is gamma = (lambda*delta + 1)/(lambda+delta). Amplify is given one gamma and a vector of lambdas and solves for the vector of deltas. The calculation is elementary.
This interpretation of gamma is developed in detail in Rosenbaum and Silber (2009), and it makes use of Wolfe's (1974) family of semiparametric deformations of an arbitrary symmetric distribuiton.
Strictly speaking, the amplification describes matched pairs, not matched sets. The senmv function views a k-to-1 matched set with k controls matched to one treated individual as a collection of k correlated treated-minus-control matched pair differences; see Rosenbaum (2007). For matched sets, it is natural to think of the amplification as describing any one of the k matched pair differences in a k-to-1 matched set.
The curve has asymptotes that the function amplify does not compute: gamma corresponds with (lambda,delta) = (gamma, Inf) and (Inf, gamma).
A related though distict idea is developed in Gastwirth et al (1998). The two approaches agree when the outcome is binary, that is, for McNemar's test.
Rosenbaum, P. R. (2007) Sensitivity analysis for m-estimates, tests and confidence intervals in matched observational studies. Biometrics, 2007, 63, 456-464.
Rosenbaum, P. R. and Silber, J. H. (2009) Amplification of sensitivity analysis in observational studies. Journal of the American Statistical Association, 104, 1398-1405.
Wolfe, D. A. (1974) A charaterization of population weighted symmetry and related results. Journal of the American Statistical Association, 69, 819-822.
data(erpcp)
senmv(erpcp,gamma=3.5,trim=1)
amplify(3.5,6)
amplify(3.5,c(4,6,8,11))
Run the code above in your browser using DataLab