truncatedPbg(p, trunc = 0.2)
trucatedP computes the one P-value for the combination w using the formula in Zaykin et al. (2002). The equivalent function truncatedPbg computes the exact same P-value for w using a binomial mixture of gamma distributions, as discussed by Hsu et al. (2013, section 3.1).
The truncated product or Fisher's method (trunc = 1) may be used for sensitivity analyses with evidence factors; see Rosenbaum (2011) and the mtm example below.
The truncated product with trunc < 1 is useful in combining P-value upper bounds produced by sensitivity analyses, for instance those produced by senmv. These upper bounds eventually approach 1 for larger values of the sensitivity parameter, and trunc < 1 eliminates these, often increasing power. See Hsu et al. (2013) for comparisons.
Meibian, Z., Zhijian, C., Qing, C. et al. (2008) Investigating DNA damage in tannery workers occupationally exposed to tivalent chromium using the comet assay. Mutation Research 654, 45-51.
Rosenbaum, P. R. (2010) Evidence factors in observational studies. Biometrika, 97, 333-345.
Rosenbaum, P. R. (2011) Some approximate evidence factors in observational studies. Journal of the American Statistical Association, 106, 285-295.
Zaykin, D. V., Zhivotovsky, L. A., Westfall, P. H. and Weir, B. S. (2002) Truncated product method of combining P-values. Genetic Epidemiology, 22, 170-185.
Zhang, K., Small, D. S., Lorch, S., Srinivas, S. and Rosenbaum, P. R. (2011) Using split samples and evidence factors in an observational study of neonatal outcomes. Journal of the American Statistical Association, 106, 511-524.
# Evidence factor example: see note above.
data(mtm)
senmv(-mtm,gamma=11.7,trim=1)
senmv(-mtm[,2:3],gamma=2.1,trim=1)
senmv(-mtm,gamma=12,trim=1)
senmv(-mtm[,2:3],gamma=3,trim=1)
truncatedPbg(c(0.05167572,0.1527849),trunc=1)
truncatedPbg(c(0.05167572,0.1527849),trunc=.2)
Run the code above in your browser using DataLab